Abstract

Thermal poling is a well-known technique for inducing second-order nonlinearities in centrosymmetric silica optical fibers. However, some 25 years since its discovery, there still remain a number of issues that prevent the realization of very long length, highly efficient all-fiber nonlinear device applications that include frequency conversion or sources of polarization-entangled photon pairs. In this Letter, we report a thermal poling method that utilizes a novel range of liquid metal and aqueous electrodes embedded into the optical fibers. We demonstrate that it is possible to pole samples that are potentially meters in length, characterized by very low losses for efficient second-harmonic generation processes. The maximum estimated effective value of χ(2) (0.12 pm/V) obtained using mercury electrodes is the highest reported in periodically poled silica fibers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single is better than double: theoretical and experimental comparison between two thermal poling configurations of optical fibers

Francesco De Lucia, Rex Bannerman, Nicolas Englebert, Martin Miguel Angel Nunez Velazquez, Francois Leo, James Gates, Simon-Pierre Gorza, Jayanta Sahu, and Pier John Anthony Sazio
Opt. Express 27(20) 27761-27776 (2019)

Optical fiber poling by induction

F. De Lucia, D. Huang, C. Corbari, N. Healy, and P. J. A. Sazio
Opt. Lett. 39(22) 6513-6516 (2014)

200-m optical fiber with an integrated electrode and its poling

Kenneth Lee, Peifang Hu, Justin L. Blows, David Thorncraft, and John Baxter
Opt. Lett. 29(18) 2124-2126 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, Opt. Lett. 16, 1732 (1991).
    [Crossref]
  2. D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
    [Crossref]
  3. W. Margulis, O. Tarasenko, and N. Myrén, Opt. Express 17, 15534 (2009).
    [Crossref]
  4. M. Fokine, L. E. Nilsson, A. A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, Opt. Lett. 27, 1643 (2002).
    [Crossref]
  5. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, Opt. Lett. 34, 2483 (2009).
    [Crossref]
  6. F. De Lucia, D. Huang, C. Corbari, N. Healy, and P. Sazio, Opt. Lett. 39, 6513 (2014).
    [Crossref]
  7. A. Canagasabey, M. Ibsen, K. Gallo, A. V. Gladishev, E. M. Dianov, C. Corbari, and P. G. Kazansky, Opt. Lett. 35, 724 (2010).
    [Crossref]
  8. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, J. Opt. Soc. Am. B 11, 665 (1994).
    [Crossref]
  9. T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 1170 (1998).
    [Crossref]
  10. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
    [Crossref]
  11. W. L. Marshall, J. Chem. Eng. Data 32, 221 (1987).
    [Crossref]
  12. D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
    [Crossref]
  13. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [Crossref]
  14. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, Opt. Lett. 24, 208 (1999).
    [Crossref]
  15. E. Y. Zhu, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, Opt. Lett. 35, 1530 (2010).
    [Crossref]
  16. T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
    [Crossref]

2014 (1)

2010 (2)

2009 (2)

2002 (1)

2001 (1)

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

1999 (3)

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, Opt. Lett. 24, 208 (1999).
[Crossref]

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[Crossref]

1998 (1)

1994 (1)

1993 (1)

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

1991 (1)

1987 (1)

W. L. Marshall, J. Chem. Eng. Data 32, 221 (1987).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[Crossref]

T. G. Alley and S. R. J. Brueck, Opt. Lett. 23, 1170 (1998).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Berlemont, D.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Bonfrate, G.

Broderick, N. G.

Broderick, N. G. R.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

Brueck, S. R. J.

Canagasabey, A.

Claesson, A. A.

Corbari, C.

De Lucia, F.

de Sandro, J. P.

Dianov, E. M.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Dyer, R. B.

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

Faccio, D.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

Fleming, S.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Fokine, M.

Foy, B. R.

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

Gallo, K.

Gladishev, A. V.

Gladyshev, A. V.

Guillemet, S.

Harradine, D. M.

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

Healy, N.

Helt, L. G.

Hernandez, Y.

Huang, D.

Ibsen, M.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Kazansky, P. G.

Kjellberg, L.

Kosolapov, A.

Krummenacher, L.

Levenson, J. A.

Liegeois, F.

Liscidini, M.

Lo, K.-M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Margulis, W.

Marshall, W. L.

W. L. Marshall, J. Chem. Eng. Data 32, 221 (1987).
[Crossref]

Masten, D. A.

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

Monro, T. M.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

Mukherjee, N.

Myers, R. A.

Myrén, N.

Nilsson, L. E.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Pruneri, V.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, Opt. Lett. 24, 208 (1999).
[Crossref]

Qian, L.

Richardson, D. J.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, Opt. Lett. 24, 208 (1999).
[Crossref]

Sazio, P.

Simonneau, C.

Sipe, J. E.

Tarasenko, O.

Vidakovic, P.

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[Crossref]

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Yashkov, M. V.

Zhu, E. Y.

IEEE Photon. Technol. Lett. (1)

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, IEEE Photon. Technol. Lett. 13, 981 (2001).
[Crossref]

J. Appl. Phys. (1)

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, J. Appl. Phys. 86, 6634 (1999).
[Crossref]

J. Chem. Eng. Data (1)

W. L. Marshall, J. Chem. Eng. Data 32, 221 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem. 97, 8557 (1993).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, Opt. Fiber Technol. 5, 235 (1999).
[Crossref]

Opt. Lett. (8)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of setup used for the thermal poling of optical fibers with internal liquid electrodes.
Fig. 2.
Fig. 2. Cross-sectional micrographs of the HF etched samples poled using novel liquid electrode types. The HF decorative etching process reveals the presence of depletion regions in all four twin-hole Ge-doped core, fused silica fibers. The observed dual concentric depletion region formation (highlighted by means of the red and blue dotted lines as a guide for the eye) is likely to be due to the Na + and Li + impurity charges involved in the electromigration process, typically characterized by differing ion mobilities in the glass [10].
Fig. 3.
Fig. 3. Setup for SHG measurements for PPSF. The source is a tunable diode laser emitting at 1550 nm [Photonetics, model 3542 HE CL, linewidth ( FWHM ) = 100    kHz ), CW power of 6 mW]. The polarization controller allows for changing the polarization state of the pump radiation, and a low-power calibrated photodiode sensor (Newport, model 918D-UV-OD3) is used to measure the SHG optical power. The inset shows the cross section of the twin-hole silica fiber. The principal polarization axes of the fiber are assumed to be aligned along the two orthogonal axes x and y , where x is the direction of the frozen-in electric field.
Fig. 4.
Fig. 4. Tuning curves of the two samples poled by means of metallic electrodes for (a) gallium (insertion loss at 1550    nm = 1.8    dB , χ ( 2 ) estimated at 0.056 pm/V, Λ QPM = 57.3072    μm ) and (b) mercury (insertion loss at 1550    nm = 1    dB , χ ( 2 ) estimated at 0.12 pm/V, Λ QPM = 57.1937    μm ) and characterized using the setup shown in Fig. 3. The curves represent the SHG power measured by a photodiode, while the wavelength of the pump light emitted by the tunable narrowband CW source is changed step by step over a range centered at 1550 nm.
Fig. 5.
Fig. 5. High-power pulsed laser pump setup for the nonlinear characterization of PPSF devices poled using aqueous electrodes.
Fig. 6.
Fig. 6. SHG output spectra of optical fibers poled using a HCl solution, as well as ordinary tap water, characterized using the setup shown in Fig. 5. Insertion loss at 1550    nm = 0.7    dB for water and 0.5 dB for HCl solution. The induced χ ( 2 ) for both aqueous solutions is estimated [14] at 0.001    pm / V , assuming a fabricated device length of 20 cm and a modal overlap area of 49.43    μm 2 at 1550 nm pump wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = 3 χ ( 3 ) E rec ,
Λ QPM = λ 2 ( n eff 2 ω n eff ω ) ,

Metrics