Abstract

A large-scale nanostructured low-temperature solar selective absorber is demonstrated experimentally. It consists of a silicon dioxide thin film coating on a rough refractory tantalum substrate, fabricated based simply on self-assembled, closely packed polystyrene nanospheres. Because of the strong light harvesting of the surface nanopatterns and constructive interference within the top silicon dioxide coating, our absorber has a much higher solar absorption (0.84) than its planar counterpart (0.78). Though its absorption is lower than that of commercial black paint with ultra-broad absorption, the greatly suppressed absorption/emission in the long range still enables a superior heat accumulation. The working temperature is as high as 196.3°C under 7-sun solar illumination in ambient conditions—much higher than those achieved by the two comparables.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral selectivity of high-temperature solar absorbers

D. M. Trotter and A. J. Sievers
Appl. Opt. 19(5) 711-728 (1980)

Superlattice photonic crystal as broadband solar absorber for high temperature operation

Veronika Rinnerbauer, Yichen Shen, John D. Joannopoulos, Marin Soljačić, Friedrich Schäffler, and Ivan Celanovic
Opt. Express 22(S7) A1895-A1906 (2014)

Comparison of selective transmitters for solar thermal applications

Robert A. Taylor, Yasitha Hewakuruppu, Drew DeJarnette, and Todd P. Otanicar
Appl. Opt. 55(14) 3829-3839 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription