Abstract

A diaphragm-free probe-type gas-pressure sensor is proposed and experimentally demonstrated based on a hollow-core photonic bandgap fiber (HC-PBF) with a quartz capillary. The section of the HC-PBF acts as a Fabry–Perot cavity, and the quartz capillary acts as a microfluidic channel for a gas inlet. An inner diameter of the quartz capillary (2  μm) smaller than the HC-PBF (10.9  μm) ensures a mirror reflection and a microfluidic channel simultaneously. The sensor probe has a minimal size (125  μm) and can function at gas pressures as high as 8 MPa. A higher pressure test is limited by our gas-pressure generation devices. Excellent stability of the sensor is observed in a long timescale, and repeatability of the sensor is confirmed by tests of six different samples. Compared with conventional optical fiber gas-pressure sensors, the proposed sensor involves a simple fabrication process and can acquire probe measurements with high sensitivity (4.17  nm/MPa), excellent linearity (0.9999), fast response, and no hysteresis. The proposed sensor can also function at temperatures as high as 800°C, which is beneficial for high pressure measurements in extreme conditions. Moreover, the fast response of the sensor is attractive for dynamic pressure measurements, which needs further study and characterization.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer

Chun Mao, Bo Huang, Ying Wang, Yijian Huang, Longfei Zhang, Yu Shao, and Yiping Wang
Opt. Express 26(23) 30108-30115 (2018)

Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers

Zhe Zhang, Jun He, Bin Du, Fengchan Zhang, Kuikui Guo, and Yiping Wang
Opt. Lett. 43(24) 6009-6012 (2018)

Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription