Abstract

We investigate coherent perfect absorption in layered thin-film structures with organic small molecules as absorbing material. We focus on strongly asymmetric resonator structures, realized with a high-optical-quality dielectric-distributed Bragg reflector and a thermally evaporated wedged organic layer on top. The optical properties of these devices are systematically investigated by selective optical pumping and probing of the structure along the wedge. We show that phases and amplitudes of all waves and their balance relations can be tuned such that coherent perfect absorption is achieved, i.e., almost all incident radiation is absorbed within the thin organic layer. We show that such wedged structures on highly reflective dielectric mirrors can be used as a novel approach to measure optical dispersion relations of absorbing materials in a broad spectral range without requiring any specific a priori knowledge of the absorbing film.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Octave-spanning coherent perfect absorption in a thin silicon film

Lorelle N. Pye, Massimo L. Villinger, Soroush Shabahang, Walker D. Larson, Lane Martin, and Ayman F. Abouraddy
Opt. Lett. 42(1) 151-154 (2017)

Determination of properties of wedged, nonuniformly thick, and absorbing thin films by using a new numerical method

Jonghoon Baek, Desiderio Kovar, John W. Keto, and Michael F. Becker
Appl. Opt. 45(7) 1627-1639 (2006)

Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films

Byung Hoon Woo, In Cheol Seo, Eunsongyi Lee, Soo-Chan An, Hoon Yeub Jeong, and Young Chul Jun
Opt. Express 25(23) 28619-28629 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription