Abstract

The localized photoemission electron originating from the plasmonic “hot spots” in a metallic bowtie nanostructure can be separately switched on and off by adjusting the relative time delay between two orthogonally polarized laser pulses. The demonstrated femtosecond timing, nanometric spatial switching of multiphoton photoemission results from the interference of quantum pathways. Energy resolved measurement of the photoemission electrons further shows that the quantum pathway interference mechanism applies to control all the liberated electrons. The experimental results also show that the probability of electron emission through the quantum pathways from a plasmonic hot spot is determined by the localized emission response to the two incident laser pulses. These findings are of importance for controlling photoemission in ultrahigh spatiotemporal resolution in metallic plasmonic nanostructures.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial- and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime

Peng Lang, Xiaowei Song, Boyu Ji, Haiyan Tao, Yinping Dou, Xun Gao, Zuoqiang Hao, and Jingquan Lin
Opt. Express 27(5) 6878-6891 (2019)

Quantum interference with distinguishable photons through indistinguishable pathways

Yoon-Ho Kim and Warren P. Grice
J. Opt. Soc. Am. B 22(2) 493-498 (2005)

Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems

Wen-Xing Yang, Ai-Xi Chen, Ziwen Huang, and Ray-Kuang Lee
Opt. Express 23(10) 13032-13040 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription