Abstract

The thermal density depression (or “density hole”) produced by a high-repetition-rate femtosecond filament in air acts as a negative lens, altering the propagation of the filament. We demonstrate the effects of externally driven gas motion on these density holes and the resulting filament steering, and we derive an expression for the gas velocity that maximizes the effect. At gas velocities more than 3 times this value, the density hole is displaced from the filament, and it no longer affects filament propagation. We demonstrate density hole displacement using an audio speaker-driven sound wave, leading to a controllable, repeatable deflection of the filament. Applications are discussed, including quasi-phase matching in gas-based nonlinear optics. To the best of our knowledge, this is the first demonstration of femtosecond filament propagation control through controlled motion of the nonlinear medium.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical beam dynamics in a gas repetitively heated by femtosecond filaments

N. Jhajj, Y.-H. Cheng, J. K. Wahlstrand, and H. M. Milchberg
Opt. Express 21(23) 28980-28986 (2013)

The effect of long timescale gas dynamics on femtosecond filamentation

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg
Opt. Express 21(4) 4740-4751 (2013)

Energy deposition of single femtosecond filaments in the atmosphere

E. W. Rosenthal, N. Jhajj, I. Larkin, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg
Opt. Lett. 41(16) 3908-3911 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription