Abstract

Nonlinear excitation regime two-line atomic fluorescence (NTLAF) is a promising two-dimensional (2D) thermometry technique for turbulent sooty flames. However, the complexity of calibrating three system parameters and expensive instruments restricts the application of the current NTLAF technique. Here we propose a simple and cheap NTLAF measurement approach based on a one-parameter model and tunable diode laser absorption spectroscopy (TDLAS) calibration. Using this methodology, only one system parameter, instead of three as in traditional NTLAF, is to be calibrated by path-averaged temperature acquired by the TDLAS technique. As a demonstration, instantaneous 2D thermometry data of a homemade burner were acquired using this approach, with measurement uncertainty of 4.5% and deviation from both reference TDLAS results and Raleigh scattering measurement results less than 50 K, typically within 20 K. This approach offers a novel simplified NTLAF solution for noncontact, in-suit, high-resolution 2D temperature measurement and is expected to greatly improve the compatibility of the NTLAF technique in scientific research and engineering applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of temperature imaging using two-line atomic fluorescence

Paul R. Medwell, Qing N. Chan, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan
Appl. Opt. 48(6) 1237-1248 (2009)

Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH

Stanislav Kostka, Sukesh Roy, Patrick J. Lakusta, Terrence R. Meyer, Michael W. Renfro, James R. Gord, and Richard Branam
Appl. Opt. 48(32) 6332-6343 (2009)

Solvent effects on two-line atomic fluorescence of indium

Qing N. Chan, Paul R. Medwell, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan
Appl. Opt. 49(8) 1257-1266 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription