Abstract

We present a laser phase noise (PN) induced effect of a phase-modulation-to-intensity-modulation conversion noise and noise pedestals underneath each of the orthogonal frequency division multiplexing (OFDM) subcarriers in a self-coherent optical OFDM transmission using a self-homodyne technique. We provide a statistical analysis on the received symbols using a histogram to demonstrate the effect of a phase rotation term and inter-subcarrier interference individually and collectively. The PN is then compensated using a simple time delay to realign the phase walk-off of the subcarriers relative to the carrier. Significant quadrature improvements of 6.82 dB using 5 MHz laser linewidth over a 720 km transmission length and 5.38 dB using 20 MHz over 240 km have been obtained with 16 quadrature amplitude modulation (QAM) over 15 GHz OFDM signal bandwidth. The technique also significantly reduced an optical-signal-to-noise ratio requirement at the bit error rate of 1×103 by 16.15 dB for 64-QAM over 160 km. With the delay, the system can tolerate three times the chromatic dispersion-length product.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase noise suppression of optical OFDM signals in 60-GHz RoF transmission system

Chun-Ting Lin, Chia-Chien Wei, and Ming-I Chao
Opt. Express 19(11) 10423-10428 (2011)

Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission

Qunbi Zhuge, Chen Chen, and David V. Plant
Opt. Express 19(5) 4472-4484 (2011)

Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems

Mohamed Morsy-Osman, Qunbi Zhuge, Lawrence R. Chen, and David V. Plant
Opt. Express 19(26) B329-B336 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, Y. Ma, and Q. Yang, J. Opt. Netw. 7, 234 (2008).
    [Crossref]
  2. N. Kaneda, T. Pfau, H. Zhang, J. Lee, Y.-K. Chen, C. J. Youn, Y. H. Kwon, E. S. Num, and S. Chandrasekhar, J. Lightwave Technol. 33, 1365 (2015).
    [Crossref]
  3. A. J. Lowery and L. B. Du, Opt. Fiber Technol. 17, 421 (2011).
    [Crossref]
  4. S. Randel, S. Adhikari, and S. L. Jansen, IEEE Photon. Technol. Lett. 22, 1288 (2010).
    [Crossref]
  5. S. T. Le, P. A. Haigh, A. D. Ellis, and S. K. Turitsyn, J. Lightwave Technol. 34, 745 (2016).
    [Crossref]
  6. T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
    [Crossref]
  7. M. E. Mousa-Pasandi and D. V. Plant, Opt. Express 18, 20651 (2010).
    [Crossref]
  8. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, J. Lightwave Technol. 28, 328 (2010).
    [Crossref]
  9. W.-R. Peng, J. Lightwave Technol. 28, 2526 (2010).
    [Crossref]
  10. Y. N. Ali and Z. Zan, IEEE Photon. J. 9, 7106414 (2017).
    [Crossref]
  11. A. Yekani, S. Amiralizadeh, and L. A. Rusch, J. Lightwave Technol. 36, 666 (2018).
    [Crossref]
  12. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
    [Crossref]
  13. S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
    [Crossref]
  14. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
    [Crossref]
  15. Z. Zan, L. B. Du, and A. J. Lowery, Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2010).
  16. R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.
  17. G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
    [Crossref]
  18. L. B. Y. Du and A. J. Lowery, Opt. Express 16, 6209 (2008).
    [Crossref]
  19. A. J. Lowery, L. B. Du, and J. Armstrong, J. Lightwave Technol. 25, 131 (2007).
    [Crossref]

2018 (2)

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

A. Yekani, S. Amiralizadeh, and L. A. Rusch, J. Lightwave Technol. 36, 666 (2018).
[Crossref]

2017 (2)

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Y. N. Ali and Z. Zan, IEEE Photon. J. 9, 7106414 (2017).
[Crossref]

2016 (1)

2015 (1)

2011 (1)

A. J. Lowery and L. B. Du, Opt. Fiber Technol. 17, 421 (2011).
[Crossref]

2010 (4)

2008 (2)

2007 (1)

1998 (1)

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

1990 (1)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

Adhikari, S.

S. Randel, S. Adhikari, and S. L. Jansen, IEEE Photon. Technol. Lett. 22, 1288 (2010).
[Crossref]

Ali, Y. N.

Y. N. Ali and Z. Zan, IEEE Photon. J. 9, 7106414 (2017).
[Crossref]

Amiralizadeh, S.

Armstrong, J.

Bez, R.

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

Chan, C. C.

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Chandrasekhar, S.

Chen, Y.-K.

Du, L. B.

A. J. Lowery and L. B. Du, Opt. Fiber Technol. 17, 421 (2011).
[Crossref]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, J. Lightwave Technol. 28, 328 (2010).
[Crossref]

A. J. Lowery, L. B. Du, and J. Armstrong, J. Lightwave Technol. 25, 131 (2007).
[Crossref]

Z. Zan, L. B. Du, and A. J. Lowery, Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2010).

Du, L. B. Y.

Edagawa, N.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

Ellis, A. D.

Guan, X.

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Haigh, P. A.

Jansen, S. L.

S. Randel, S. Adhikari, and S. L. Jansen, IEEE Photon. Technol. Lett. 22, 1288 (2010).
[Crossref]

Kamio, Y.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Kaneda, N.

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

Kwon, Y. H.

Lacaita, A. L.

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

Le, S. T.

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

S. T. Le, P. A. Haigh, A. D. Ellis, and S. K. Turitsyn, J. Lightwave Technol. 34, 745 (2016).
[Crossref]

Lee, J.

Lowery, A. J.

A. J. Lowery and L. B. Du, Opt. Fiber Technol. 17, 421 (2011).
[Crossref]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, J. Lightwave Technol. 28, 328 (2010).
[Crossref]

L. B. Y. Du and A. J. Lowery, Opt. Express 16, 6209 (2008).
[Crossref]

A. J. Lowery, L. B. Du, and J. Armstrong, J. Lightwave Technol. 25, 131 (2007).
[Crossref]

Z. Zan, L. B. Du, and A. J. Lowery, Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2010).

Lu, G.

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Luís, R. S.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Ma, Y.

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

Megret, P.

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

Mendinueta, J. D.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Mousa-Pasandi, M. E.

Nakamura, M.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Nguyen, T. T.

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

Num, E. S.

Peng, W.-R.

Perron, L. M.

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

Pfau, T.

Plant, D. V.

Puttnam, B. J.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Randel, S.

S. Randel, S. Adhikari, and S. L. Jansen, IEEE Photon. Technol. Lett. 22, 1288 (2010).
[Crossref]

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

Rusch, L. A.

Sakaguchi, J.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Sakamoto, T.

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Schmidt, B. J. C.

Shieh, W.

Shinada, S.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Taga, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

Turitsyn, S. K.

Villa, S.

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

Wada, N.

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Wakabayashi, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

Wuilpart, M.

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

Yamamoto, N.

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

Yang, Q.

Yekani, A.

Yi, X.

Yoshida, Y.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, J. Lightwave Technol. 8, 1716 (1990).
[Crossref]

Youn, C. J.

Zan, Z.

Y. N. Ali and Z. Zan, IEEE Photon. J. 9, 7106414 (2017).
[Crossref]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, J. Lightwave Technol. 28, 328 (2010).
[Crossref]

Z. Zan, L. B. Du, and A. J. Lowery, Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2010).

Zhang, H.

IEEE Access (1)

G. Lu, X. Guan, T. Sakamoto, N. Yamamoto, and C. C. Chan, IEEE Access 5, 24602 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[Crossref]

IEEE Photon. J. (1)

Y. N. Ali and Z. Zan, IEEE Photon. J. 9, 7106414 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Randel, S. Adhikari, and S. L. Jansen, IEEE Photon. Technol. Lett. 22, 1288 (2010).
[Crossref]

T. T. Nguyen, S. T. Le, M. Wuilpart, and P. Megret, IEEE Photon. Technol. Lett. 30, 1467 (2018).
[Crossref]

IEEE Trans. Electron Devices (1)

S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, IEEE Trans. Electron Devices 45, 110 (1998).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Netw. (1)

Opt. Express (2)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, Opt. Fiber Technol. 17, 421 (2011).
[Crossref]

Other (2)

Z. Zan, L. B. Du, and A. J. Lowery, Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2010).

R. S. Luís, B. J. Puttnam, J. D. Mendinueta, J. Sakaguchi, S. Shinada, Y. Kamio, N. Wada, and M. Nakamura, IEEE 4th International Conference on Photonics (ICP) (2013), p. 123.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Self-homodyne optical OFDM system using delay lines (a) transmitter and (b) receiver designs.
Fig. 2.
Fig. 2. Received electrical signal spectrum with its constellation plot for (a) 1.25 GHz, (b) 0.625 GHz, (c) 0.321 GHz, and (d) 0.156 GHz frequency spacing using 10 MHz laser LW after 1600 km.
Fig. 3.
Fig. 3. Histograms of the received Q component for (a) 1.25 GHz, (b) 0.625 GHz, (c) 0.321 GHz, and (d) 0.156 GHz frequency spacing.
Fig. 4.
Fig. 4. Q -factor versus fiber length for several laser LWs with 16-QAM.
Fig. 5.
Fig. 5. OSNR at of 1 × 10 3 BER versus fiber length for the received 15 GHz signal bandwidth with and without delay for the different QAMs.

Metrics