Abstract

We propose novel plasmonic tweezers based on silver V-type nanoantennas placed on a conducting ground layer, which can effectively mitigate the plasmonic heating effect and thus enable subwavelength plasmonic trapping in the near-infrared region. Using the centroid algorithm to analyze the motion of trapped spheres, we can experimentally extract the value of optical trapping potential. The result confirms that the plasmonic tweezers have a dual-mode subwavelength trapping capability when the incident laser beam is linearly polarized along two orthogonal directions. We have also performed full-wave simulations, which agree with the experimental data very well in terms of spectral response and trapping potential. It is expected that the dual-mode subwavelength trapping can be used in non-contact manipulations of a single nanoscale object, such as a biomolecule or quantum dot, and find important applications in biology, life science, and applied physics.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole

Anastasios H. Panaretos and Douglas H. Werner
Opt. Express 23(7) 8298-8309 (2015)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Plasmonic nano-tweezer based on square nanoplate tetramers

Qijian Jin, Li Wang, Sheng Yan, Hua Wei, and Yingzhou Huang
Appl. Opt. 57(19) 5328-5332 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (2)

NameDescription
» Visualization 1       Record motion movie of a 1-µm-diameter polystyrene sphere trapped by a x-polarized 1064 nm laser beam.
» Visualization 2       Record motion movie of a 1-µm-diameter polystyrene sphere trapped by a y-polarized 1064 nm laser beam.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription