Abstract

Floquet states have been the subject of great research interest since Zel’dovich’s pioneering work on the quasienergy of a quantum system influenced by a temporally periodic action. Nowadays, periodic modulation of the system Hamiltonian is achieved mostly by microwaves, leading to novel exciting phenomena in condensed matter physics. On the other hand, nonthermal optical control of magnetization at picosecond time scales is currently a highly appealing research topic for potential applications in magnetic data storage. Here we combine these two concepts to theoretically investigate Floquet states in the system of exchange-coupled spins in a ferromagnet. Periodic perturbation of the magnetization of an iron–garnet film by circularly polarized femtosecond laser pulses is shown to establish the magnetization dynamics behaving like Floquet states. An external magnetic field allows tuning of the Floquet states, leading to pronounced increase in the precession amplitude by one order of magnitude at the center of the Brillouin zone, i.e., when the precession frequency is a multiple of the laser pulse repetition rate. Floquet states might potentially allow for parametric generation of magnetic oscillations. The observed phenomena expand the capabilities of coherent ultrafast optical control of magnetization and pave the way for their application in quantum computation or data processing.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of the phase of the magnetization precession excited by circularly polarized femtosecond-laser pulses

Alexander I. Chernov, Mikhail A. Kozhaev, Anastasiia Khramova, Alexander N. Shaposhnikov, Anatoly R. Prokopov, Vladimir N. Berzhansky, Anatoly K. Zvezdin, and Vladimir I. Belotelov
Photon. Res. 6(11) 1079-1083 (2018)

Femtosecond all-optical modulation of collective spin in the (Ga,Mn)As ferromagnet

Myron D. Kapetanakis, Jigang Wang, and Ilias E. Perakis
J. Opt. Soc. Am. B 29(2) A95-A102 (2012)

Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices [Invited]

Ilya A. Akimov, Vladimir I. Belotelov, Alexey V. Scherbakov, Martin Pohl, Andrey N. Kalish, Alexey S. Salasyuk, Michael Bombeck, Christian Brüggemann, Andrey V. Akimov, Roslan I. Dzhioev, Vladimir L. Korenev, Yuri G. Kusrayev, Victor F. Sapega, Vyacheslav A. Kotov, Dmitri R. Yakovlev, Anatoly K. Zvezdin, and Manfred Bayer
J. Opt. Soc. Am. B 29(2) A103-A118 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription