Abstract

We study the compact localized scattering resonances of periodic and aperiodic chains of dipolar nanoparticles by combining the powerful equitable partition theorem (EPT) of a graph theory with the spectral dyadic Green’s matrix formalism for the engineering of embedded quasi-modes in non-Hermitian open scattering systems in three spatial dimensions. We provide the analytical and numerical design of the spectral properties of compact localized states in electromagnetically coupled chains and establish a connection with the distinctive behavior of bound states in the continuum. Our results extend the concept of compact localization to the scattering resonances of open systems with an arbitrary aperiodic order beyond tight-binding models, and are relevant for the efficient design of novel photonic and plasmonic metamaterial architectures for enhanced light–matter interaction.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Steady-state ab initio laser theory for complex gain media

Alexander Cerjan, Y. D. Chong, and A. Douglas Stone
Opt. Express 23(5) 6455-6477 (2015)

Edge modes of scattering chains with aperiodic order

Ren Wang, Malte Röntgen, Christian V. Morfonios, Felipe A. Pinheiro, Peter Schmelcher, and Luca Dal Negro
Opt. Lett. 43(9) 1986-1989 (2018)

Steady-state ab initio laser theory for N-level lasers

Alexander Cerjan, Yidong Chong, Li Ge, and A. Douglas Stone
Opt. Express 20(1) 474-488 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription