Abstract

The levitation of optical scatterers provides a new means to develop free-space volumetric displays. The principle is to illuminate a levitating particle displaced at high velocity in three dimensions (3D) to create images based on the persistence of vision (POV). Light scattered by the particle can be observed all around the volumetric display and, therefore, provides a true 3D image that does not rely on interference effects and remains insensitive to the angle of observation. The challenge is to control with high accuracy and at high speed the trajectory of the particle in 3D. Here we use electrically driven planar Paul traps (PPTs) to control the trajectory of electrically charged particles. A single gold particle colloid is manipulated in 3D through AC and DC electrical voltages applied to a PPT. The electric voltages can be modulated at high frequencies (150 kHz) and allow for a high-speed displacement of particles without moving any other system component. The optical scattering of the particle in levitation yields free-space images that are imaged with conventional optics. The trajectory of the particle is entirely encoded in the electric voltage and driven through stationary planar electrodes. We show in this Letter the proof-of-concept for the generation of 3D free-space graphics with a single electrically scanned particle.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light scattering by laser levitated particles

Nebil Y. Misconi, John P. Oliver, Keith F. Ratcliff, Edwin T. Rusk, and Wan-Xian Wang
Appl. Opt. 29(15) 2276-2281 (1990)

Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens

Wenguo Zhu, Niko Eckerskorn, Avinash Upadhya, Li Li, Andrei V. Rode, and Woei Ming Lee
Biomed. Opt. Express 7(7) 2902-2911 (2016)

Observation of light scattering from nonspherical particles using optical levitation

A. Ashkin and J. M. Dziedzic
Appl. Opt. 19(5) 660-668 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription