Abstract

It was recently demonstrated theoretically that when the polarimetric properties of a material depend only upon the direction transverse to that of propagation (long coherence length regime), depolarization in transmission evolves quadratically with material thickness. This behavior was observed in several experimental studies. However, some of these studies unlikely satisfy the long coherence length condition under which the theory applies. Here, we demonstrate that abandoning a unidirectional approach to the propagation of light through a medium, i.e., introducing scatter, causes quadratic depolarization to occur in the short coherence length regime.

Full Article  |  PDF Article
OSA Recommended Articles
Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism

Naman Agarwal, Jiho Yoon, Enric Garcia-Caurel, Tatiana Novikova, Jean-Charles Vanel, Angelo Pierangelo, Alexander Bykov, Alexey Popov, Igor Meglinski, and Razvigor Ossikovski
Opt. Lett. 40(23) 5634-5637 (2015)

Nonuniform depolarization properties of typical nanostructures and potential applications

Zhengqiong Dong, Honggang Gu, Jinlong Zhu, Yating Shi, Lei Nie, Jiaying Lyu, Xiuguo Chen, Hao Jiang, and Shiyuan Liu
Opt. Lett. 45(7) 1910-1913 (2020)

Characteristic Mueller matrices for direct assessment of the breaking of symmetries

Pengcheng Li, Aziz Tariq, Honghui He, and Hui Ma
Opt. Lett. 45(3) 706-709 (2020)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948).
    [Crossref]
  2. R. M. A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978).
    [Crossref]
  3. R. Ossikovski and A. De Martino, J. Opt. Soc. Am A 32, 343 (2015).
    [Crossref]
  4. G. Strang, Linear Algebra and Its Applications, 2nd ed. (Academic, 1980), p. 205.
  5. N. Ortega-Quijano and J. L. Arce-Diego, Opt. Lett. 36, 1942 (2011).
    [Crossref]
  6. R. Ossikovski, Opt. Lett. 36, 2330 (2011).
    [Crossref]
  7. R. Ossikovski and O. Arteaga, Opt. Lett. 39, 4470 (2014).
    [Crossref]
  8. V. Devlaminck, J. Opt. Soc. Am. A 32, 1736 (2015).
    [Crossref]
  9. N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, Opt. Lett. 40, 5634 (2015).
    [Crossref]
  10. J. M. Charbois and V. Devlaminck, J. Opt. Soc. Am. A 33, 2414 (2016).
    [Crossref]
  11. S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
    [Crossref]
  12. H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
    [Crossref]
  13. B. Gompf, M. Gill, M. Dressel, and A. Berrier, J. Opt. Soc. Am. A 35, 301 (2018).
    [Crossref]
  14. P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).
  15. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).
  16. N. Ortega-Quijano and J. L. Arce-Diego, Opt. Express 19, 14348 (2011).
    [Crossref]
  17. J. W. Hovenier and C. V. M. van der Mee, Chapter 3 of Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).

2018 (2)

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

B. Gompf, M. Gill, M. Dressel, and A. Berrier, J. Opt. Soc. Am. A 35, 301 (2018).
[Crossref]

2017 (1)

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (1)

2011 (3)

1978 (1)

1948 (1)

1931 (1)

P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).

Agarwal, N.

Arce-Diego, J. L.

Arteaga, O.

Azzam, R. M. A.

Berrier, A.

Bykov, A.

Charbois, J. M.

De Martino, A.

R. Ossikovski and A. De Martino, J. Opt. Soc. Am A 32, 343 (2015).
[Crossref]

Dembski, S.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Devlaminck, V.

Dressel, M.

Garcia-Caurel, E.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
[Crossref]

N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, Opt. Lett. 40, 5634 (2015).
[Crossref]

Gill, M.

Gompf, B.

Groeber-Becker, F. K.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

Hovenier, J. W.

J. W. Hovenier and C. V. M. van der Mee, Chapter 3 of Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).

Jones, R. C.

Kubelka, P.

P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).

Lee, H. R.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Li, P.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Lotz, C.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Meglinski, I.

Munk, F.

P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).

Novikova, T.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, Opt. Lett. 40, 5634 (2015).
[Crossref]

Ortega-Quijano, N.

Ossikovski, R.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
[Crossref]

N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski, Opt. Lett. 40, 5634 (2015).
[Crossref]

R. Ossikovski and A. De Martino, J. Opt. Soc. Am A 32, 343 (2015).
[Crossref]

R. Ossikovski and O. Arteaga, Opt. Lett. 39, 4470 (2014).
[Crossref]

R. Ossikovski, Opt. Lett. 36, 2330 (2011).
[Crossref]

Pierangelo, A.

Popov, A.

Strang, G.

G. Strang, Linear Algebra and Its Applications, 2nd ed. (Academic, 1980), p. 205.

van der Mee, C. V. M.

J. W. Hovenier and C. V. M. van der Mee, Chapter 3 of Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).

Vanel, J.-C.

Yoo, S. H.

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
[Crossref]

Yoo, T. S. H.

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Yoon, J.

Appl. Surf. Sci. (1)

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, Appl. Surf. Sci. 421, 870 (2017).
[Crossref]

J. Opt. Soc. Am A (1)

R. Ossikovski and A. De Martino, J. Opt. Soc. Am A 32, 343 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

H. R. Lee, T. S. H. Yoo, P. Li, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, and T. Novikova, Proc. SPIE 10677, 1067718 (2018).
[Crossref]

Z. Tech. Phys. (1)

P. Kubelka and F. Munk, Z. Tech. Phys. 12, 593 (1931).

Other (3)

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

J. W. Hovenier and C. V. M. van der Mee, Chapter 3 of Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).

G. Strang, Linear Algebra and Its Applications, 2nd ed. (Academic, 1980), p. 205.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic illustrating the stacking of layers in transmission: (a) traditional view, where only forward transmission is considered, and (b) layers interacting through reflection or scattering.
Fig. 2.
Fig. 2. Non-zero elements of the logarithmic decomposition $ {{\bf L}_{\text{t}}} $ of the Mueller matrix transmittance $ {{\bf M}_{\text{t}}} $ as a function of dimensionless thickness. The left frame shows the depolarizing elements $ {L_{\text{t},11}} $ , $ {L_{\text{t},22}} $ , and $ {L_{\text{t},33}} $ , while the right frame shows the non-depolarizing elements $ {L_{\text{t},23}} $ and $ {L_{\text{t},32}} $ . The curves for $ {L_{\text{t},11}} $ and $ {L_{\text{t},22}} $ are nearly identical.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d M ( z ) d z = m M ( z ) ,
M ( z ) = exp ( m z ) ,
L = log ( M ) ,
m = m + Δ m 2 z .
M ( z ) = exp ( m z + 1 2 Δ m 2 z 2 ) .
M = exp ( n m z 0 + n 2 Δ m 2 z 0 2 ) .
d d z ( M + ( z ) M ( z ) ) = m ( M + ( z ) M ( z ) ) ,
m = ( m a ( s ) r ( s ) s r [ a ( s ) m ] ) ,
a ( s ) = ( s 00 s 01 s 02 s 03 s 01 s 00 0 0 s 02 0 s 00 0 s 03 0 0 s 00 ) .
r ( m ) = ( m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ) .
( M + ( z ) M ( z ) ) = exp ( m z ) ( M + ( 0 ) M ( 0 ) ) ,
m = ( α 0 0 0 0 α 0 0 0 0 α r 0 0 r α ) ,
s = diag [ s , s c , s c , s ( 1 2 c ) ] ,

Metrics