Abstract

The photocarrier dynamics in molecular beam epitaxy (MBE)-grown single- (SLQD) and multi-layered (MLQD) InAs/GaAs quantum dots were studied. Photoluminescence (PL) spectroscopy has shown that the MLQD has more uniform QD size distribution as compared to the bimodal SLQD. Correlation between PL and THz-TDS has shown that photocarrier transport is more favored in the MLQD owing to this uniform QD size distribution, resulting to higher THz emission. The THz emission from the QD samples were found to be proportional to temperature. A drift-related photocarrier transport mechanism is proposed, wherein photocarriers generated in the QDs are accelerated by an interface electric field.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy

Jorge Michael M. Presto, Elizabeth Ann P. Prieto, Karim M. Omambac, Jessica Pauline C. Afalla, Deborah Anne O. Lumantas, Arnel A. Salvador, Armando S. Somintac, Elmer S. Estacio, Kohji Yamamoto, and Masahiko Tani
Opt. Express 23(11) 14532-14540 (2015)

Low temperature-grown GaAs carrier lifetime evaluation by double optical pump terahertz time-domain emission spectroscopy

Valynn Katrine Mag-usara, Stefan Funkner, Gudrun Niehues, Elizabeth Ann Prieto, Maria Herminia Balgos, Armando Somintac, Elmer Estacio, Arnel Salvador, Kohji Yamamoto, Muneaki Hase, and Masahiko Tani
Opt. Express 24(23) 26175-26185 (2016)

All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Joohang Lee, Takeo Kageyama, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 26(9) 11568-11576 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
    [Crossref]
  2. H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
    [Crossref]
  3. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006).
  4. S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
    [Crossref]
  5. K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
    [Crossref]
  6. M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
    [Crossref]
  7. A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
    [Crossref]
  8. K.-T. Tsen, Ultrafast Dynamical Processes in Semiconductors, vol. 92 (Springer Science & Business Media, 2004).
  9. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
    [Crossref]
  10. P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
    [Crossref]
  11. V. Karpus, R. Norkus, B. Čechavičius, and A. Krotkus, “Thz-excitation spectroscopy technique for band-offset determination,” Opt. Express 26(26), 33807–33817 (2018).
    [Crossref]
  12. I. Beleckaitė and R. Adomavičius, “Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements,” J. Appl. Phys. 125(22), 225706 (2019).
    [Crossref]
  13. I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
    [Crossref]
  14. N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
    [Crossref]
  15. O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
    [Crossref]
  16. A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
    [Crossref]
  17. K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
    [Crossref]
  18. J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
    [Crossref]
  19. A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
    [Crossref]
  20. H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
    [Crossref]
  21. D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
    [Crossref]
  22. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  23. M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
    [Crossref]
  24. J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
    [Crossref]
  25. D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
    [Crossref]
  26. J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
    [Crossref]
  27. G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
    [Crossref]
  28. E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
    [Crossref]
  29. J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
    [Crossref]
  30. N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
    [Crossref]
  31. V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
    [Crossref]
  32. M. Reid and R. Fedosejevs, “Terahertz emission from (100) inas surfaces at high excitation fluences,” Appl. Phys. Lett. 86(1), 011906 (2005).
    [Crossref]
  33. L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
    [Crossref]
  34. E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
    [Crossref]
  35. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
    [Crossref]
  36. K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
    [Crossref]
  37. S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
    [Crossref]
  38. X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
    [Crossref]
  39. J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
    [Crossref]
  40. M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
    [Crossref]
  41. A. Markelz and E. J. Heilweil, “Temperature-dependent terahertz output from semi-insulating gaas photoconductive switches,” Appl. Phys. Lett. 72(18), 2229–2231 (1998).
    [Crossref]
  42. M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
    [Crossref]
  43. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
  44. K. Fletcher and P. Butcher, “An exact solution of the linearized boltzmann equation with applications to the hall mobility and hall factor of n-gaas,” J. Phys. C: Solid State Phys. 5(2), 212–224 (1972).
    [Crossref]
  45. M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
    [Crossref]
  46. H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
    [Crossref]

2019 (1)

I. Beleckaitė and R. Adomavičius, “Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements,” J. Appl. Phys. 125(22), 225706 (2019).
[Crossref]

2018 (3)

V. Karpus, R. Norkus, B. Čechavičius, and A. Krotkus, “Thz-excitation spectroscopy technique for band-offset determination,” Opt. Express 26(26), 33807–33817 (2018).
[Crossref]

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

2017 (3)

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

2015 (2)

J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
[Crossref]

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

2013 (2)

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

2012 (1)

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
[Crossref]

2011 (1)

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

2010 (1)

M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
[Crossref]

2009 (2)

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

2008 (1)

V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
[Crossref]

2007 (2)

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

2006 (1)

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

2005 (1)

M. Reid and R. Fedosejevs, “Terahertz emission from (100) inas surfaces at high excitation fluences,” Appl. Phys. Lett. 86(1), 011906 (2005).
[Crossref]

2003 (4)

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
[Crossref]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

2002 (2)

M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

2001 (1)

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

2000 (2)

P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
[Crossref]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

1999 (2)

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

1998 (1)

A. Markelz and E. J. Heilweil, “Temperature-dependent terahertz output from semi-insulating gaas photoconductive switches,” Appl. Phys. Lett. 72(18), 2229–2231 (1998).
[Crossref]

1997 (2)

H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
[Crossref]

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

1996 (4)

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
[Crossref]

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

1990 (1)

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

1986 (1)

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

1972 (1)

K. Fletcher and P. Butcher, “An exact solution of the linearized boltzmann equation with applications to the hall mobility and hall factor of n-gaas,” J. Phys. C: Solid State Phys. 5(2), 212–224 (1972).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Abdulmunem, O.

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

Adomavicius, R.

I. Beleckaitė and R. Adomavičius, “Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements,” J. Appl. Phys. 125(22), 225706 (2019).
[Crossref]

V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
[Crossref]

Afalla, J.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Afalla, J. P.

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

Afalla, J. P. C.

Alexander, E.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Alferov, Z. I.

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

Aspnes, D.

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Auston, D.

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Awitan, F. C.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Bacaoco, M. Y.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Bae, I.-H.

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

Balgos, M.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Balgos, M. H.

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Balzer, J. C.

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

Bardolaza, H. R.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Beleckaite, I.

I. Beleckaitė and R. Adomavičius, “Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements,” J. Appl. Phys. 125(22), 225706 (2019).
[Crossref]

Berry, G.

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

Bhat, R.

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Bimberg, D.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

Butcher, P.

K. Fletcher and P. Butcher, “An exact solution of the linearized boltzmann equation with applications to the hall mobility and hall factor of n-gaas,” J. Phys. C: Solid State Phys. 5(2), 212–224 (1972).
[Crossref]

Cabello, N. I.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Cadatal-Raduban, M.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Cafe, A.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Castrillo, P.

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

Cataluna, M.

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

Cechavicius, B.

Cervantes, K.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Coates, N.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Daghestani, N.

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

Darrow, J.

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

De Los Reyes, A.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Defensor, M.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Eaves, L.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

Egorov, A. Y.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Engström, O.

M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
[Crossref]

Estacio, E.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
[Crossref]

Estacio, E. S.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
[Crossref]

Fafard, S.

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

Fedosejevs, R.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) inas surfaces at high excitation fluences,” Appl. Phys. Lett. 86(1), 011906 (2005).
[Crossref]

Fletcher, K.

K. Fletcher and P. Butcher, “An exact solution of the linearized boltzmann equation with applications to the hall mobility and hall factor of n-gaas,” J. Phys. C: Solid State Phys. 5(2), 212–224 (1972).
[Crossref]

Gaafar, M.

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

Gao, M.

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

Garcia, A.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Grundmann, M.

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

Han, I.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Han, P.

P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
[Crossref]

Hangyo, M.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
[Crossref]

Harris Jr, J.

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

Hassoon, K.

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

Heilweil, E. J.

A. Markelz and E. J. Heilweil, “Temperature-dependent terahertz output from semi-insulating gaas photoconductive switches,” Appl. Phys. Lett. 72(18), 2229–2231 (1998).
[Crossref]

Henini, M.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

Hessman, D.

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

Heyman, J.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Hu, B.

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Huang, X.

P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
[Crossref]

Hunsche, S.

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

Jaculbia, R.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Jung, S.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Kaczmarczyk, M.

M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
[Crossref]

Kaniewska, M.

M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
[Crossref]

Karpus, V.

Kelso, S.

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Kim, E. K.

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

Kim, J.

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Kirstaedter, N.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Knox, W.

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

Ko, B.

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

Komarov, S.

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

Kop’ev, P.

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Kostakis, I.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
[Crossref]

Krotkus, A.

V. Karpus, R. Norkus, B. Čechavičius, and A. Krotkus, “Thz-excitation spectroscopy technique for band-offset determination,” Opt. Express 26(26), 33807–33817 (2018).
[Crossref]

V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
[Crossref]

Lagally, M.

J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
[Crossref]

Ledentsov, N.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

Lee, H.

H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
[Crossref]

Lee, J.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Lee, K. S.

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

Leem, J.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Leitenstorfer, A.

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

Liu, H.

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

Liu, K.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

Logan, R.

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Lopez, J.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Lopez, L. P.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Lopez Jr, L.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Lumantas, D.

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

Lumantas, D. A. O.

Mabilangan, A.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Main, P.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

Malevich, V. L.

V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
[Crossref]

Markelz, A.

A. Markelz and E. J. Heilweil, “Temperature-dependent terahertz output from semi-insulating gaas photoconductive switches,” Appl. Phys. Lett. 72(18), 2229–2231 (1998).
[Crossref]

Maximov, M.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

McCaffrey, J.

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

Missous, M.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
[Crossref]

Miyazaki, H.

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

Muldera, J.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Murakami, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

Nakajima, M.

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
[Crossref]

Nakazato, T.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Nguyen, D. C.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Nguyen, T. B.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Nguyen, X. T.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Norkus, R.

Nuss, M.

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

Oh, G.

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

Ohta, M.

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

Omambac, K.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Omambac, K. M.

Ono, S.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

Pasquazi, A.

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

Patane, A.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

Peccianti, M.

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

Peters, L.

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

Pham, H. M.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Pham, M. H.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Pistol, M.-E.

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

Pobre, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

Polimeni, A.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

Ponseca Jr, C.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

Porquez, J.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Presto, J. M. M.

Prieto, E. A. P.

Pryor, C.

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

Quema, A.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

Quiroga, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

Ragasa, J. C.

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Rahimi-Iman, A.

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

Reid, M.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) inas surfaces at high excitation fluences,” Appl. Phys. Lett. 86(1), 011906 (2005).
[Crossref]

Reinhardt, A.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Rose, M.

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

Ross, G.

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

Saeedkia, D.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
[Crossref]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

Salvador, A.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
[Crossref]

Salvador, A. A.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
[Crossref]

Samuelson, L.

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

Sarmago, R. V.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Sarukura, N.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

Schmidt, O.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Schroder, D. K.

D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006).

Sercel, P. C.

H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
[Crossref]

Shah, J.

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

Shimizu, T.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Solomon, G.

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

Somintac, A.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
[Crossref]

Somintac, A. S.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
[Crossref]

Song, J. D.

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

Stier, O.

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

Strasser, G.

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

Sumikura, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

Takahashi, H.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

Takahashi, M.

M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
[Crossref]

Takatori, S.

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

Tani, M.

J. M. M. Presto, E. A. P. Prieto, K. M. Omambac, J. P. C. Afalla, D. A. O. Lumantas, A. A. Salvador, A. S. Somintac, E. S. Estacio, K. Yamamoto, and M. Tani, “Confined photocarrier transport in inas pyramidal quantum dots via terahertz time-domain spectroscopy,” Opt. Express 23(11), 14532–14540 (2015).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

Teichert, C.

J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
[Crossref]

Tersoff, J.

J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
[Crossref]

Tingzon, P.

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

Tsen, K.-T.

K.-T. Tsen, Ultrafast Dynamical Processes in Semiconductors, vol. 92 (Springer Science & Business Media, 2004).

Tunesi, J.

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

Ustinov, V.

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Vasquez, D.

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Vasquez, J. D. E.

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

Vizcara, S.

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

Wasilewski, Z.

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

Xu, J.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

Yamamoto, K.

Yamamoto, Y.

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

Yang, W.

H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
[Crossref]

Yeo, H.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Yoshioka, R.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

Yu, J.-I.

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

Yuan, T.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

Yun, I.

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

Zhang, X.-C.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
[Crossref]

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

Zhukov, A.

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Appl. Phys. B (1)

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type insb and n-type inas surfaces,” Appl. Phys. B 71(6), 901–904 (2000).
[Crossref]

Appl. Phys. Express (1)

J. Muldera, N. I. Cabello, J. C. Ragasa, A. Mabilangan, M. H. Balgos, R. Jaculbia, A. Somintac, E. Estacio, and A. Salvador, “Photocarrier transport and carrier recombination efficiency in vertically aligned si nanowire arrays synthesized via metal-assisted chemical etching,” Appl. Phys. Express 6(8), 082101 (2013).
[Crossref]

Appl. Phys. Lett. (14)

E. Estacio, M. H. Pham, S. Takatori, M. Cadatal-Raduban, T. Nakazato, T. Shimizu, N. Sarukura, A. Somintac, M. Defensor, F. C. Awitan, R. Jaculbia, A. Salvador, and A. Garcia, “Strong enhancement of terahertz emission from gaas in inas/gaas quantum dot structures,” Appl. Phys. Lett. 94(23), 232104 (2009).
[Crossref]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) inas surfaces at high excitation fluences,” Appl. Phys. Lett. 86(1), 011906 (2005).
[Crossref]

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr, R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) inas,” Appl. Phys. Lett. 90(15), 151915 (2007).
[Crossref]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field,” Appl. Phys. Lett. 83(6), 1068–1070 (2003).
[Crossref]

D. Hessman, P. Castrillo, M.-E. Pistol, C. Pryor, and L. Samuelson, “Excited states of individual quantum dots studied by photoluminescence spectroscopy,” Appl. Phys. Lett. 69(6), 749–751 (1996).
[Crossref]

N. Kirstaedter, O. Schmidt, N. Ledentsov, D. Bimberg, V. Ustinov, A. Y. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer inas/gaas quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

H. Liu, M. Gao, J. McCaffrey, Z. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78(1), 79–81 (2001).
[Crossref]

P. Han, X. Huang, and X.-C. Zhang, “Direct characterization of terahertz radiation from the dynamics of the semiconductor surface field,” Appl. Phys. Lett. 77(18), 2864–2866 (2000).
[Crossref]

N. Daghestani, M. Cataluna, G. Berry, G. Ross, and M. Rose, “Terahertz emission from inas/gaas quantum dot based photoconductive devices,” Appl. Phys. Lett. 98(18), 181107 (2011).
[Crossref]

X.-C. Zhang, B. Hu, J. Darrow, and D. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).
[Crossref]

J. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at gaas surfaces,” Appl. Phys. Lett. 83(26), 5476–5478 (2003).
[Crossref]

M. Grundmann, N. Ledentsov, O. Stier, D. Bimberg, V. Ustinov, P. Kop’ev, and Z. I. Alferov, “Excited states in self-organized inas/gaas quantum dots: theory and experiment,” Appl. Phys. Lett. 68(7), 979–981 (1996).
[Crossref]

A. Markelz and E. J. Heilweil, “Temperature-dependent terahertz output from semi-insulating gaas photoconductive switches,” Appl. Phys. Lett. 72(18), 2229–2231 (1998).
[Crossref]

M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of thz radiation intensity from semi-insulating gaas surfaces at high temperatures,” Appl. Phys. Lett. 81(8), 1462–1464 (2002).
[Crossref]

Appl. Sci. Convergence Technol. (1)

K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, “Temperature dependent photoluminescence from inas/gaas quantum dots grown by molecular beam epitaxy,” Appl. Sci. Convergence Technol. 26(4), 86–90 (2017).
[Crossref]

C. R. Phys. (1)

V. L. Malevich, R. Adomavičius, and A. Krotkus, “Thz emission from semiconductor surfaces,” C. R. Phys. 9(2), 130–141 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown ingaas-inalas photoconductive antennas at 1.55 um pulse excitation,” IEEE Trans. Terahertz Sci. Technol. 2(6), 617–622 (2012).
[Crossref]

J. Appl. Phys. (3)

D. Aspnes, S. Kelso, R. Logan, and R. Bhat, “Optical properties of al x ga1- x as,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from inas and insb,” J. Appl. Phys. 91(9), 5533–5537 (2002).
[Crossref]

I. Beleckaitė and R. Adomavičius, “Determination of the terahertz pulse emitting dipole orientation by terahertz emission measurements,” J. Appl. Phys. 125(22), 225706 (2019).
[Crossref]

J. Cryst. Growth (2)

A. Somintac, E. Estacio, and A. Salvador, “Observation of blue-shifted photoluminescence in stacked inas/gaas quantum dots,” J. Cryst. Growth 251(1-4), 196–200 (2003).
[Crossref]

G. Solomon, S. Komarov, J. Harris Jr, and Y. Yamamoto, “Increased size uniformity through vertical quantum dot columns,” J. Cryst. Growth 175-176, 707–712 (1997).
[Crossref]

J. Electron. Mater. (1)

M. Kaniewska, O. Engström, and M. Kaczmarczyk, “Classification of energy levels in quantum dot structures by depleted layer spectroscopy,” J. Electron. Mater. 39(6), 766–772 (2010).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman, and J. C. Balzer, “Tin nanoparticles for enhanced thz generation in tds systems,” J. Infrared, Millimeter, Terahertz Waves 38(10), 1206–1214 (2017).
[Crossref]

J. Korean Phys. Soc. (1)

J. Kim, B. Ko, J.-I. Yu, and I.-H. Bae, “Temperature-and excitation-power-dependent optical properties ofinas/gaas quantum dots by comparison of photoluminescence andphotoreflectance spectroscopy,” J. Korean Phys. Soc. 55(2), 640–645 (2009).
[Crossref]

J. Lumin. (1)

N. I. Cabello, P. Tingzon, K. Cervantes, A. Cafe, J. Lopez, A. Mabilangan, A. De Los Reyes, L. Lopez Jr, J. Muldera, D. C. Nguyen, X. T. Nguyen, H. M. Pham, T. B. Nguyen, A. Salvador, A. Somintac, and E. Estacio, “Luminescence and carrier dynamics in nanostructured silicon,” J. Lumin. 186, 312–317 (2017).
[Crossref]

J. Mater. Sci.: Mater. Electron. (2)

S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim, and J. Lee, “Size distribution effects on self-assembled inas quantum dots,” J. Mater. Sci.: Mater. Electron. 18(S1), 191–194 (2007).
[Crossref]

H. R. Bardolaza, J. D. E. Vasquez, M. Y. Bacaoco, E. Alexander, L. P. Lopez, A. S. Somintac, A. A. Salvador, E. S. Estacio, and R. V. Sarmago, “Temperature dependence of thz emission and junction electric field of gaas–algaas modulation-doped heterostructures with different i-algaas spacer layer thicknesses,” J. Mater. Sci.: Mater. Electron. 29(10), 8760–8766 (2018).
[Crossref]

J. Phys. C: Solid State Phys. (1)

K. Fletcher and P. Butcher, “An exact solution of the linearized boltzmann equation with applications to the hall mobility and hall factor of n-gaas,” J. Phys. C: Solid State Phys. 5(2), 212–224 (1972).
[Crossref]

Nano Energy (1)

L. Peters, J. Tunesi, A. Pasquazi, and M. Peccianti, “High-energy terahertz surface optical rectification,” Nano Energy 46, 128–132 (2018).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

M. H. Balgos, J. P. Afalla, S. Vizcara, D. Lumantas, E. Estacio, A. Salvador, and A. Somintac, “Temperature behavior of unstrained (gaas/algaas) and strained (ingaas/gaas) quantum well bandgaps,” Opt. Quantum Electron. 47(8), 3053–3063 (2015).
[Crossref]

Phys. Rev. B (4)

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from inas induced by carrier diffusion and drift,” Phys. Rev. B 73(15), 155330 (2006).
[Crossref]

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. Main, “Temperature dependence of the optical properties of i n a s/a l y ga 1- y as self-organized quantum dots,” Phys. Rev. B 59(7), 5064–5068 (1999).
[Crossref]

H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shapein inas/gaas quantum-dot structures,” Phys. Rev. B 55(15), 9757–9762 (1997).
[Crossref]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating inp surfaces induced by temperature,” Phys. Rev. B 67(19), 195308 (2003).
[Crossref]

Phys. Rev. Lett. (2)

A. Leitenstorfer, S. Hunsche, J. Shah, M. Nuss, and W. Knox, “Femtosecond charge transport in polar semiconductors,” Phys. Rev. Lett. 82(25), 5140–5143 (1999).
[Crossref]

J. Tersoff, C. Teichert, and M. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76(10), 1675–1678 (1996).
[Crossref]

Phys. Status Solidi B (1)

K. Omambac, J. Porquez, J. Afalla, D. Vasquez, M. Balgos, R. Jaculbia, A. Somintac, and A. Salvador, “Application of external tensile and compressive strain on a single layer in a s/g a a s quantum dot via epitaxial lift-off,” Phys. Status Solidi B 250(8), 1632–1635 (2013).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Other (3)

K.-T. Tsen, Ultrafast Dynamical Processes in Semiconductors, vol. 92 (Springer Science & Business Media, 2004).

D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, 2006).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Temperature-dependent PL spectra of (a) SLQD and (b) MLQD. The PL spectra undergoes redshift as T increases. The PL peak intensity also decreases and the FWHM broadens at elevated T. Two peaks can be observed for both SLQD and MLQD PL. A 3rd peak corresponding to bulk GaAs only becomes evident in the MLQD sample at 300 K
Fig. 2.
Fig. 2. Temperature-dependence of the PL energy peaks for (a) SLQD and (b) MLQD. All peaks followed the behavior dictated by the Varshni equation, suggesting these are band-to-band transitions. None of the PL peak energies is possibly defect-related
Fig. 3.
Fig. 3. Normalized excitation power-dependent PL spectra of the (a) SLQD ad (b) MLQD. The plot of PL intensity vs excitation power was fitted with a linear trendline for the (c) SLQD and (d) MLQD. Peak A and B continuously increase as the excitation power is increased. Meanwhile, Peak C becomes saturated at 1 mW and Peak D eventually becomes higher as excitation power is increased, consistent with state-filling
Fig. 4.
Fig. 4. (a) THz-TDS waveforms for p-InAs, SLQD, MLQD, and SI-GaAs (b) Corresponding FFT spectra of the THz-TDS waveforms. The highest THz signal was obtained from p-InAs. The THz emission from the MLQD sample is about $30\%$ and the SLQD is $6\%$ as compared to p-InAs.
Fig. 5.
Fig. 5. Temperature-dependence of the THz emission from p-InAs, SLQD and MLQD. The THz amplitudes were normalized with respect to peak-to-peak amplitude of p-InAs at $T =$ 14 K. The THz emission from p-InAs decreases while the THz emission from the SLQD and MLQD increases as T is increased.

Tables (1)

Tables Icon

Table 1. Varshni Fitting Parameter Values

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E 0 α T 2 T + β
E T H z = S c 2 R 0 ( J t + 2 P t 2 ) d z
N i ( r , t ) t = G ( r , t ) + { D i ( r , t ) N i ( r , t ) } ± { μ i ( r , t ) E ( r , t ) N i ( r , t ) }
J d i f f = μ e ( r , t ) ( k T e / q ) N e ( r , t )
J d r i f t = e μ e ( r , t ) E ( r , t ) N e ( r , t )

Metrics