Abstract

The nonlinear refractive index n2 of SiO2-Al2O3-La2O3 (SAL) glasses of 10 to 24 mol% La2O3 is determined via Z-scan technique at 800 nm in the sub-100 fs time regime. n2 (5.8 to 9.3 × 10−16 cm2/W) correlates linearly with the La2O3 concentration scaling by the factor (0.264 ± 0.007)×10−16 cm2/W per mol% of La2O3. The relation between n2 and the linear refractive index n0 of the SAL systems is successfully described by the theoretical model of Boling, Glass and Owyoung (BGO theory). Increasing concentrations of heavy La3+ ions and non-bridging oxygen accompanied by a rising volume of the O2− ions are considered to be responsible for the n0 and n2 increase as well as a slight Urbach energy decrease. The upper limit of the La2/3O hyperpolarizability is estimated to amount to (2.2 ± 0.2)×10−36 esu.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SiO2-Al2O3-La2O3 glass - a superior medium for optical Kerr gating at moderate pump intensity

Christian Karras, Wolfgang Paa, Doris Litzkendorf, Stephan Grimm, Kay Schuster, and Herbert Stafast
Opt. Mater. Express 6(1) 125-130 (2016)

Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses

Atsunobu Masuno, Hiroyuki Inoue, Kohei Yoshimoto, and Yasuhiro Watanabe
Opt. Mater. Express 4(4) 710-718 (2014)

Effect of B2O3 and fluoride additions on the Yb3+ luminescence of an alumosilicate glass in the system Li2O/MgO/Al2O3/SiO2

Juliane Krey, Andreas Herrmann, Joachim Hein, Jörg Körner, Malte C. Kaluza, and Christian Rüssel
Opt. Mater. Express 6(8) 2662-2670 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
    [Crossref]
  2. S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
    [Crossref]
  3. A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
    [Crossref]
  4. Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
    [Crossref]
  5. H. Yang, G. Lakshminarayana, S. Zhou, Y. Teng, and J. Qiu, “Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses,” Opt. Express 16(9), 6731–6735 (2008).
    [Crossref] [PubMed]
  6. K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
    [Crossref]
  7. J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The mean viscosity of quartz glass reactor tubes,” Cryst. Res. Technol. 21(6), 763–770 (1986).
    [Crossref]
  8. S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2(2), 140–152 (2012).
    [Crossref]
  9. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
    [Crossref]
  10. D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
    [Crossref]
  11. M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
    [Crossref]
  12. R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
    [Crossref] [PubMed]
  13. P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
    [Crossref] [PubMed]
  14. S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
    [Crossref]
  15. I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
    [Crossref]
  16. S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
    [Crossref]
  17. S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
    [Crossref]
  18. A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
    [Crossref]
  19. N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
    [Crossref]
  20. J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
    [Crossref]
  21. B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
    [Crossref]
  22. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(5), 2151–2157 (2006).
    [Crossref] [PubMed]
  23. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
    [Crossref]
  24. D. Milam, “Review and Assessment of Measured Values of the Nonlinear Refractive-Index Coefficient of Fused Silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref]
  25. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29(6), 602–604 (2004).
    [Crossref] [PubMed]
  26. D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
    [Crossref]
  27. Z. Yu, L. Gundlach, and P. Piotrowiak, “Efficiency and temporal response of crystalline Kerr media in collinear optical Kerr gating,” Opt. Lett. 36(15), 2904–2906 (2011).
    [Crossref] [PubMed]
  28. J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
    [Crossref]
  29. N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
    [Crossref]
  30. Heraeus Quarzglas GmbH & Co. KG, “Quartz Glass for Optics - Data and Properties” (Heraeus Quarzglas GmbH & Co. KG, 2014), optics.heraeus-quarzglas.com/media/webmedia_local/downloads/FusedsilicaandQuartzGlassforOpticsDataandProperties.pdf .
  31. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [Crossref] [PubMed]
  32. R. E. Bridges, G. L. Fischer, and R. W. Boyd, “Z-scan measurement technique for non-Gaussian beams and arbitrary sample thicknesses,” Opt. Lett. 20(17), 1821–1823 (1995).
    [Crossref] [PubMed]
  33. S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
    [Crossref]
  34. I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
    [Crossref]
  35. M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
    [Crossref]
  36. F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
    [Crossref]
  37. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  38. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
    [Crossref]
  39. H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
    [Crossref]
  40. L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
    [Crossref]
  41. M. Bache, H. Guo, B. Zhou, and X. Zeng, “The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β-BaB2O4) nonlinear crystal,” Opt. Mater. Express 3(3), 357–382 (2013).
    [Crossref]
  42. K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. - Mater. Electron. 16(10), 633–643 (2005).
    [Crossref]
  43. R. L. Sutherland, Handbook Of Nonlinear Optics (Marcel Dekker, 1996).
  44. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
    [Crossref]
  45. M. E. Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. Appl. Phys. 69(10), 6876–6884 (1991).
    [Crossref]
  46. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5–6), 896–900 (2007).
    [Crossref]
  47. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
    [Crossref]
  48. X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
    [Crossref]
  49. J. A. Duffy, “Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment,” Phys. Chem. Glasses 46(1), 1–6 (2005).
  50. V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review),” J. Chem. Technol. Metall. 45(3), 219–250 (2010).

2013 (4)

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

M. Bache, H. Guo, B. Zhou, and X. Zeng, “The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β-BaB2O4) nonlinear crystal,” Opt. Mater. Express 3(3), 357–382 (2013).
[Crossref]

2012 (2)

S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2(2), 140–152 (2012).
[Crossref]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

2011 (2)

S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
[Crossref]

Z. Yu, L. Gundlach, and P. Piotrowiak, “Efficiency and temporal response of crystalline Kerr media in collinear optical Kerr gating,” Opt. Lett. 36(15), 2904–2906 (2011).
[Crossref] [PubMed]

2010 (5)

Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
[Crossref]

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review),” J. Chem. Technol. Metall. 45(3), 219–250 (2010).

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
[Crossref]

2009 (1)

S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
[Crossref]

2008 (4)

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

H. Yang, G. Lakshminarayana, S. Zhou, Y. Teng, and J. Qiu, “Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses,” Opt. Express 16(9), 6731–6735 (2008).
[Crossref] [PubMed]

2007 (4)

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5–6), 896–900 (2007).
[Crossref]

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

2006 (2)

F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
[Crossref]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(5), 2151–2157 (2006).
[Crossref] [PubMed]

2005 (3)

J. A. Duffy, “Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment,” Phys. Chem. Glasses 46(1), 1–6 (2005).

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. - Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

2004 (1)

2003 (2)

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

2002 (1)

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

2000 (1)

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

1999 (1)

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

1998 (1)

1997 (1)

A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
[Crossref]

1995 (1)

1992 (1)

S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
[Crossref]

1991 (1)

M. E. Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. Appl. Phys. 69(10), 6876–6884 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (2)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

1987 (1)

1986 (1)

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The mean viscosity of quartz glass reactor tubes,” Cryst. Res. Technol. 21(6), 763–770 (1986).
[Crossref]

1983 (1)

I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
[Crossref]

1978 (1)

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

1977 (1)

D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
[Crossref]

1880 (2)

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Abdel-Baki, M.

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
[Crossref]

Abdel-Wahab, F. A.

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
[Crossref]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[Crossref]

Aitchison, J. S.

Allan, D. C.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Aronne, A.

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
[Crossref]

Auguste, J.-L.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Bache, M.

Barmenkov, Y. O.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Bartelt, H.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Benmore, C. J.

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

Blömer, D.

Boling, N.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Boyd, R. W.

Bressiani, A. H. A.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

Bressiani, J. C.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

Bridges, R. E.

Bytchkov, A.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[Crossref]

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Chen, D.

Clayden, N. J.

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

Copudec, V.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Coutures, G. J.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Coutures, J. P.

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

Crigler, S. G.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Cristiglio, V.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Das, S.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Dejneka, M. J.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Dellith, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Dimitrov, V.

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review),” J. Chem. Technol. Metall. 45(3), 219–250 (2010).

Ding, J.

Douglas, C.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Dreisow, F.

Duffy, J. A.

J. A. Duffy, “Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment,” Phys. Chem. Glasses 46(1), 1–6 (2005).

Ebendorff-Heidepriem, H.

Edén, M.

S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
[Crossref]

S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
[Crossref]

Ehrt, D.

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

El-Diasty, F.

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
[Crossref]

Escalante-Zarate, L.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Esposito, S.

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
[Crossref]

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Fischer, G. L.

Florian, P.

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

Funke, A.

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The mean viscosity of quartz glass reactor tubes,” Cryst. Res. Technol. 21(6), 763–770 (1986).
[Crossref]

Gilch, P.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Glass, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Glass, J. A.

D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
[Crossref]

Godmanis, I. T.

I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
[Crossref]

Grimm, S.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Grins, J.

S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
[Crossref]

Gundlach, L.

Guo, H.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hanson, B. Z.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Hart, R. T.

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

Hein, J.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

Hennet, L.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Herrmann, A.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

Hirao, K.

K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
[Crossref]

Hübner, K.

I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
[Crossref]

Humbert, G.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Iftekhar, S.

S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
[Crossref]

S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
[Crossref]

Ikramov, R. G.

S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
[Crossref]

Ikushima, A. J.

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

Jalalov, R. M.

S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
[Crossref]

Jamier, R.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Jetschke, S.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Kaluza, M. C.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

Kirchhof, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The mean viscosity of quartz glass reactor tubes,” Cryst. Res. Technol. 21(6), 763–770 (1986).
[Crossref]

Kiryanov, A. V.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Klöpfel, D.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

Kobelke, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Komatsu, T.

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review),” J. Chem. Technol. Metall. 45(3), 219–250 (2010).

Körner, J.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Kroll, D.

K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

Kuhn, S.

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

Kuksenkov, D.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Labruyere, A.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Laimgruber, S.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Lakshminarayana, G.

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Leich, M.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Leonova, E.

S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
[Crossref]

Leproux, P.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Lin, G.

Lin, H.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

Lines, M. E.

M. E. Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. Appl. Phys. 69(10), 6876–6884 (1991).
[Crossref]

Litzkendorf, D.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Lorentz, H. A.

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

Lorenz, L.

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Ludwig, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Major, A.

Manning, S.

Marchi, J.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

Massiot, D.

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Milam, D.

D. Milam, “Review and Assessment of Measured Values of the Nonlinear Refractive-Index Coefficient of Fused Silica,” Appl. Opt. 37(3), 546–550 (1998).
[Crossref]

D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
[Crossref]

Miller, W. J.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Minelly, J. D.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Monro, T. M.

Morais, D. S.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

Nikolakakos, I.

Nolte, S.

Owyoung, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Pal, M.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Paul, M. C.

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4(6), 875–881 (1987).
[Crossref]

Pernice, P.

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
[Crossref]

Piotrowiak, P.

Pozdnyakova, I.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Price, D. L.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

Qiu, J.

Radi, A.

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Richardson, K.

K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

Rüssel, C.

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

Sadiki, N.

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Saito, K.

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

Schmidt, B.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Schneider, J.

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

Schreiber, T.

Schuster, K.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Schwuchow, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Sen, S.

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Shen, Y.

Smith, P. W. E.

Soga, N.

S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
[Crossref]

Sutherland, R. L.

R. L. Sutherland, Handbook Of Nonlinear Optics (Marcel Dekker, 1996).

Szameit, A.

Tanabe, S.

S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
[Crossref]

Tanaka, K.

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5–6), 896–900 (2007).
[Crossref]

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. - Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

Teng, Y.

Tiegel, M.

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

Tombelaine, V.

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Trukhin, A. N.

I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
[Crossref]

Tünnermann, A.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Völksch, G.

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

Vu, H. T.

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

Wang, X.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

Wang, Z.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

Weber, J. M.

D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
[Crossref]

Weber, R.

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Yang, H.

Yoshino, F.

Youngman, R. E.

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

Yu, Z.

Zaynobidinov, S.

S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
[Crossref]

Zeng, X.

Zenteno, L. A.

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

Zhang, G.

Zhang, Q.

Zhao, X.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

Zhou, B.

Zhou, S.

Zinth, W.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Adv. Mater. Res. (1)

D. Ehrt, H. T. Vu, A. Herrmann, and G. Völksch, “Luminescent ZnO-Al2O3-SiO2 Glasses and Glass Ceramics,” Adv. Mater. Res. 39–40, 231–236 (2008).
[Crossref]

Ann. Phys. (2)

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A broadband Kerr shutter for femtosecond fluorescence spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Appl. Phys. Lett. (1)

D. Milam, J. M. Weber, and J. A. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett. 31(12), 822–825 (1977).
[Crossref]

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3–4), 318–324 (2003).
[Crossref]

Cryst. Res. Technol. (1)

J. Kirchhof and A. Funke, “Reactor Problems in Modified Chemical Vapour Deposition (II). The mean viscosity of quartz glass reactor tubes,” Cryst. Res. Technol. 21(6), 763–770 (1986).
[Crossref]

IEEE J. Quantum Electron. (3)

A. V. Kiryanov, M. C. Paul, Y. O. Barmenkov, S. Das, M. Pal, and L. Escalante-Zarate, “Yb3+ Concentration Effects in Novel Yb Doped Lanthano-Alumino-Silicate Fibers: Experimental Study,” IEEE J. Quantum Electron. 49(6), 528–544 (2013).
[Crossref]

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Int. J. Appl. Glass Sci. (2)

K. Richardson, D. Kroll, and K. Hirao, “Glasses for Photonic Applications,” Int. J. Appl. Glass Sci. 1(1), 74–86 (2010).
[Crossref]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J.-L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Am. Ceram. Soc. (2)

M. J. Dejneka, B. Z. Hanson, S. G. Crigler, L. A. Zenteno, J. D. Minelly, D. C. Allan, C. Douglas, W. J. Miller, and D. Kuksenkov, “La2O3-Al2O3-SiO2 Glasses for High-Power, Yb3+-Doped, 980-nm Fiber Lasers,” J. Am. Ceram. Soc. 85(5), 1100–1106 (2002).
[Crossref]

S. Tanabe, K. Hirao, and N. Soga, “Elastic Properties and Molar Volume of Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 75(3), 503–506 (1992).
[Crossref]

J. Appl. Phys. (2)

F. El-Diasty, F. A. Abdel-Wahab, and M. Abdel-Baki, “Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions,” J. Appl. Phys. 100, 093511 (2006).
[Crossref]

M. E. Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. Appl. Phys. 69(10), 6876–6884 (1991).
[Crossref]

J. Appl. Spectrosc. (1)

S. Zaynobidinov, R. G. Ikramov, and R. M. Jalalov, “Urbach energy and the tails of the density of states in amorphous semiconductors,” J. Appl. Spectrosc. 78(2), 223–227 (2011).
[Crossref]

J. Chem. Technol. Metall. (1)

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review),” J. Chem. Technol. Metall. 45(3), 219–250 (2010).

J. Mater. Chem. C (1)

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1, 5031–5039 (2013).
[Crossref]

J. Mater. Sci. (1)

S. Kuhn, A. Herrmann, J. Hein, M. C. Kaluza, and C. Rüssel, “Sm3+-doped La2O3Al2O3SiO2-glasses: structure, fluorescence and thermal expansion,” J. Mater. Sci. 48(22), 8014–8022 (2013).
[Crossref]

J. Mater. Sci. - Mater. Electron. (1)

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. - Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

J. Non-Cryst. Solids (5)

I. Pozdnyakova, N. Sadiki, L. Hennet, V. Cristiglio, A. Bytchkov, G. J. Coutures, and D. L. Price, “Structures of lanthanum and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction,” J. Non-Cryst. Solids 354(18), 2038–2044 (2008).
[Crossref]

S. Iftekhar, E. Leonova, and M. Edén, “Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR,” J. Non-Cryst. Solids 355(43–44), 2165–2174 (2009).
[Crossref]

S. Iftekhar, J. Grins, and M. Edén, “Composition-property relationships of the La2O3Al2O3SiO2 glass system,” J. Non-Cryst. Solids 356(20–22), 1043–1048 (2010).
[Crossref]

N. J. Clayden, S. Esposito, A. Aronne, and P. Pernice, “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses,” J. Non-Cryst. Solids 258(1–3), 11–19 (1999).
[Crossref]

J. Marchi, D. S. Morais, J. Schneider, J. C. Bressiani, and A. H. A. Bressiani, “Dispersion of the nonlinear refractive index in sapphire,” J. Non-Cryst. Solids 351(10–11), 863–868 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

R. Weber, S. Sen, R. E. Youngman, R. T. Hart, and C. J. Benmore, “Structure of High Alumina Content Al2O3SiO2 Composition Glasses,” J. Phys. Chem. B 112(51), 16726–16733 (2008).
[Crossref] [PubMed]

P. Florian, N. Sadiki, D. Massiot, and J. P. Coutures, “27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts,” J. Phys. Chem. B 111(1), 9747–9757 (2007).
[Crossref] [PubMed]

J. Phys. Chem. Solids (2)

M. Abdel-Baki, F. A. Abdel-Wahab, A. Radi, and F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68(8), 1457–1470 (2007).
[Crossref]

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5–6), 896–900 (2007).
[Crossref]

Mater. Chem. Phys. (1)

A. Aronne, S. Esposito, and P. Pernice, “FTIR and DTA study of lanthanum aluminosilicate glasses,” Mater. Chem. Phys. 51(2), 163–168 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mat. (1)

J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Copudec, A. Labruyere, and R. Jamier, “Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications,” Opt. Mat. 32(9), 1002–1006 (2010).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Glasses (1)

J. A. Duffy, “Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment,” Phys. Chem. Glasses 46(1), 1–6 (2005).

Phys. Rev. B (2)

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39(5), 3337–3350 (1989).
[Crossref]

Phys. Status Solidi B (1)

I. T. Godmanis, A. N. Trukhin, and K. Hübner, “Exciton-phonon interaction in crystalline and vitreous SiO2,” Phys. Status Solidi B 116(1), 279–287 (1983).
[Crossref]

Physica B (1)

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392(1–2), 132–136 (2007).
[Crossref]

Other (2)

R. L. Sutherland, Handbook Of Nonlinear Optics (Marcel Dekker, 1996).

Heraeus Quarzglas GmbH & Co. KG, “Quartz Glass for Optics - Data and Properties” (Heraeus Quarzglas GmbH & Co. KG, 2014), optics.heraeus-quarzglas.com/media/webmedia_local/downloads/FusedsilicaandQuartzGlassforOpticsDataandProperties.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of the Z-scan setup
Fig. 2
Fig. 2 Wavelength dependent linear refractive index n0 of SAL glass samples of various La2O3 concentrations.
Fig. 3
Fig. 3 Absorption coefficients α(E) of SAL glass samples as function of photon energy E and La2O3 concentration fitted exponentially to determine the Urbach energy EU [eV].
Fig. 4
Fig. 4 Intensity dependent Z-scan traces of SAL glass with 10.5 mol% La2O3 (sample 1) recorded at various pulse peak intensities in the focal plane.
Fig. 5
Fig. 5 Peak-to-Valley ratio ΔTPV as function of the incident pulse intensity I0. The percentage values represent the La2O3 mol% of each sample.
Fig. 6
Fig. 6 Nonlinear refractive index n2 of SAL glass (black squares) as a function of the La2O3 concentration as well as the linear refractive indices n0 measured in the present work (blue stars), by Iftekhar et al. (green triangles) [17] and Dejneka et al. (red circles) [1].
Fig. 7
Fig. 7 Nonlinear refractive index n 2 F with respect to the laser electric field in cgs units as a function of the La2O3 content c(La2O3): black squares: converted from the measured n2 and n0 values, blue triangles: calculated according to the BGO theory (3), using the measured n0 values, red circles: calculated according to (6) solved for n 2 F using only the oxygen hyperpolarizabilities of SiO2, Al2O3 and La2O3 given by Adair et al. [44] (c.f. section 4.2).
Fig. 8
Fig. 8 Correlation γ = Qα2 between the hyperpolarizability γ and the polarizability α. For the investigated SAL systems Q = (7.8 ± 0.6)×1010esu/cm6.
Fig. 9
Fig. 9 Normalized n2 values according to (7) as function of the number density of La2/3O. The upper limit of γLa2O3 amounts to (2.2 ± 0.2)×10−36 esu.

Tables (3)

Tables Icon

Table 1 Chemical composition, glass transition temperature Tg, thermal expansion coefficient αth, density ρ and molar volume Vm of the SAL glasses and the F300 quartz glass sample (Heraeus Quarzglas GmbH & Co. KG)

Tables Icon

Table 2 Linear refractive index n0 at 800 nm and nd at 587.6 nm, Abbe number νd, nonlinear refractive index n2 at 800 nm and Urbach energy EU of the SAL glasses and fused silica (F300)

Tables Icon

Table 3 Optical parameters n2, n 2 F, αO2−, αcation, αmeasured, 〈γmeasured〉, and the r value for each SAL and the fused silica (F300) sample

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α ( E ) = α 0 exp E E U
( n 2 ) s = ( n 2 ) r ( Δ T P V ) s E s E r ( Δ T P V ) r L r L s ( 1 R r ) ( 1 R s ) ,
n 2 F ( 10 13 esu ) = 68 ( n d 1 ) ( n d 2 + 2 ) 2 ν d [ 1.52 + ( n d + 1 ) ( n d 2 + 2 ) 2 6 n d ν d ] 1 / 2 ,
α O 2 ( n 0 ) = [ ( V m 2.252 ) ( n 0 2 1 ) ( n 0 2 + 2 ) α i ] / N O 2 ,
r = 2 + x + ( 1 x y ) 1 x + ( 1 x y ) = 3 y 2 2 x y ,
γ = 2 n 2 F n 0 f 4 π N ,
n 2 Norm = N La 2 / 3 O γ La 2 / 3 O = 2 n 2 F n 0 f 4 π N Si 1 / 2 O γ Si 1 / 2 O N Al 2 / 3 O γ Al 2 / 3 O ,

Metrics