A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng. 298(5), 487–503 (2013).
[Crossref]
R. Buividas, S. Rekstyte, M. Malinauskas, and S. Juadkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]
S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21(14), 17028–17041 (2013).
[Crossref]
[PubMed]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]
R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1–4), 504–512 (2005).
[Crossref]
K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.) 80(3), 621–626 (2005).
[Crossref]
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS 170, 169–273 (2004).
H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21(3), 624–633 (2003).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids 330, 1–12 (2003).
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics 11(3), 155–168 (1997).
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng. 298(5), 487–503 (2013).
[Crossref]
H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids 330, 1–12 (2003).
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1–4), 504–512 (2005).
[Crossref]
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]
S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21(14), 17028–17041 (2013).
[Crossref]
[PubMed]
R. Buividas, S. Rekstyte, M. Malinauskas, and S. Juadkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics 11(3), 155–168 (1997).
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng. 298(5), 487–503 (2013).
[Crossref]
A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng. 298(5), 487–503 (2013).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.) 80(3), 621–626 (2005).
[Crossref]
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS 170, 169–273 (2004).
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.) 80(3), 621–626 (2005).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.) 80(3), 621–626 (2005).
[Crossref]
S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids 330, 1–12 (2003).
H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, process, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]
M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27(9), 1742–1751 (1988).
[Crossref]
[PubMed]
M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, and N. Takahashi, “Fabrication of large-core, high-Δ optical waveguides in polymers,” Appl. Opt. 34(6), 1041–1046 (1995).
[Crossref]
[PubMed]
K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. (Berl.) 80(3), 621–626 (2005).
[Crossref]
R. Inführ, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254(4), 836–840 (2007).
[Crossref]
R. Houbertz, “Laser interaction in sol–gel based materials 3-D lithography for photonic applications,” Appl. Surf. Sci. 247(1–4), 504–512 (2005).
[Crossref]
H. B. Sun and S. Kawata, “Two photon photopolymerization and 3D lithographic microfabrication,” APS 170, 169–273 (2004).
B. Lunitz, J. Guttmann, H. P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37(17), 1079 (2001).
[Crossref]
M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14(10), 2338–2343 (1996).
[Crossref]
H.-B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21(3), 624–633 (2003).
[Crossref]
A. Zakery and S. R. Elliott, “Optical properties an applications of chalcogenides glasses: A review,” J. Non-Crsyt. Solids 330, 1–12 (2003).
D. A. B. Miller, “Physical Reasons for Optical Interconnection,” Special Issue on Smart Pixels, J. Optoelectronics 11(3), 155–168 (1997).
S. Wu, J. Serbin, and M. Gu, “„Two photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. Chem. 181(1), 1–11 (2006).
[Crossref]
C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” Journal of Polymer Sci. 45(15), 3280–3291 (2007).
A. Camposeo, L. Persano, and D. Pisigano, “Light emitting electrospun nanofibers for nanophotonics and optoelectronics,” Macromol. Mater. Eng. 298(5), 487–503 (2013).
[Crossref]
M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[Crossref]
R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[Crossref]
C. Berger, M. Kossel, C. Menolfi, T. Morf, T. Toifl, and M. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[Crossref]
V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leizing, “Application of two photon 3D lithography for the fabrication of embedded ORMORCER waveguides,” Proc. SPIE 6476, 64760P (2007).
R. A. Norwood, R. Y. Gao, J. Shama, and C. C. Teng, “Design, manufacturing, and testing of planar optical waveguide devices,” SPIE, Bellingham, MA 19, 4439 (2001).
G.L Bona, B.J. Offrein, U. Bapst, C. Berger, R. Beyeler, R. Budd, R. Dangel, L. Dellmann and F. Horst “Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board,” Proc. of SPIE. 5453 (14) (2004).
M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, R. Gadonas, J. S. Juodazis and A. Piskarskas, “Femtosecond laser fabrication of hybrid micro-optical elements and their integration on fiber tip,” SPIE 1176 (2010).
G. Langer, I. Muehlbacher, S. Pichler, H. Stahr, F. Stelzer and J. Sassmannshausen, PCT Int. Appl. WO 2009021256 A1 20090219 (2009).
S. Pichler, PhD Thesis, TU Graz (2007).
R. Inführ, J. Stampfl, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, and W. Grogger, “Material systems and processes for three-dimensional micro- and nanoscale fabrication and lithography,” Proc. MRS1179 (2009).
J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring (Hanser, 1995).
Morrison and Boyd, Organic Chemistry, Fourth Edition (Prentice Hall, 1983), p. 961.