Abstract

A low-loss polymer medium to interconnect 2 single mode optical fibers is developed and characterized. It consists of a so-called self-written waveguide (SWW) formed by illuminating a photosensitive polymerization mix with light emanating from the fiber, after which the exposed part polymerizes. Depending on the material system used, this waveguide can have a step index or graded refractive index profile. The fabrication process and its effect on the waveguide performance are explained using an empirical model and afterwards experimentally verified. This approach enables easy process monitoring and optimization, effectively resulting in total insertion losses below 0.3 dB for a single mode fiber-SWW-fiber transition at 1550 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling the nonlinear photoabsorptive behavior during self-written waveguide formation in a photopolymer

Haoyu Li, Yue Qi, Ra’ed Malallah, and John T. Sheridan
J. Opt. Soc. Am. B 32(5) 912-922 (2015)

Self-written waveguides in photopolymer

Ra’ed Malallah, Derek Cassidy, Inbarasan Muniraj, James P. Ryle, John J. Healy, and John T. Sheridan
Appl. Opt. 57(22) E80-E88 (2018)

Controlling the trajectories of self-written waveguides in photopolymer

Ra’ed Malallah, Haoyu Li, Inbarasan Muniraj, Derek Cassidy, Nebras Al-Attar, John J. Healy, and John T. Sheridan
J. Opt. Soc. Am. B 35(8) 2046-2056 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
    [Crossref]
  2. H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
    [Crossref]
  3. M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
    [Crossref]
  4. J. S. Young and J. P. Kara, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20(6), 065005 (2011).
    [Crossref]
  5. K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
    [Crossref]
  6. H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
    [Crossref]
  7. N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
    [Crossref]
  8. S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
    [Crossref]
  9. K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
    [Crossref]
  10. K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
    [Crossref]
  11. O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
    [Crossref]
  12. K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
    [Crossref]
  13. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996).
    [Crossref] [PubMed]
  14. K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
    [Crossref]
  15. K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
    [Crossref] [PubMed]
  16. T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20(8), 1556–1562 (2002).
    [Crossref]
  17. A. Anderson and K. Peters, “Finite element simulation of self-writing waveguide formation through photopolymerization,” J. Lightwave Technol. 27(24), 5529–5539 (2009).
    [Crossref]
  18. T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
    [Crossref]
  19. M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
    [Crossref]
  20. U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
    [Crossref]
  21. L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
    [Crossref]
  22. A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
    [Crossref]
  23. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
    [Crossref]
  24. B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
    [Crossref]
  25. M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
    [Crossref]
  26. A. D. Yablon, “Splice measurement and characterization,” in Optical Fiber Fusion Splicing (Springer Berlin Heidelberg, 2005), pp. 183–202.

2012 (1)

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

2011 (2)

J. S. Young and J. P. Kara, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20(6), 065005 (2011).
[Crossref]

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
[Crossref]

2010 (2)

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

2009 (3)

2008 (1)

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

2007 (1)

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

2006 (2)

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

2005 (1)

L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
[Crossref]

2004 (3)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

2003 (3)

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

2002 (4)

B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20(8), 1556–1562 (2002).
[Crossref]

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
[Crossref]

2001 (1)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

1996 (1)

Anderson, A.

Bachelot, R.

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Bräuer, A.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Bulou, H.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Chan, H. P.

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

Chan, S. C.

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

Cheng, K. W.

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

Crégut, O.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Cusano, A.

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

Cutolo, A.

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

Dannberg, P.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Dorkenoo, K.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Dorkenoo, K. D.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

Ecoffet, C.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Endo, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

Fort, A.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Fressengeas, N.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Fröhlich, L.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Fuentes-Tapia, I.

B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Fukuzawa, E.

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

Giordano, M.

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

Gleeson, M. R.

Goldenberg, L.

L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
[Crossref]

Hashimoto, T.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Hirose, N.

N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
[Crossref]

Hocine, M.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Houbertz, R.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Ibaragi, O.

N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
[Crossref]

Ito, H.

T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20(8), 1556–1562 (2002).
[Crossref]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Ito, M.

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

Jradi, S.

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

Kagami, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20(8), 1556–1562 (2002).
[Crossref]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Kaino, T.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

Kanda, M.

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

Kara, J. P.

J. S. Young and J. P. Kara, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20(6), 065005 (2011).
[Crossref]

Kawasaki, A.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

Kewitsch, A. S.

Kitanobou, A.

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

Kugel, G.

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

Liu, S.

Lougnot, D. J.

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

Matsui, T.

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

McLeod, R. R.

Mikami, O.

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

Mimura, Y.

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

Mochizuki, A.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Mune, K.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Myung-Joon, K.

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

Naitou, R.

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Nicolais, L.

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

Obata, Y.

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

Oe, K.

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Okamoto, N.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

Olivares-Pérez, A.

B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Ono, S.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
[Crossref]

Ozawa, H.

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

Peters, K.

Pinto-Iguanero, B.

B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Popall, M.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Romeo, M.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Royer, P.

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Sakhno, O.

L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
[Crossref]

Sheridan, J. T.

Shioda, T.

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

Soppera, O.

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

Streppel, U.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Stumpe, J.

L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
[Crossref]

Sugihara, O.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

Tomiki, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

Tsuchie, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

Uddin, M. A.

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

van Wonderen, A. J.

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

Wächter, C.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Wakabayashi, K.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
[Crossref]

Watanabe, O.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

Yamashita, K.

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

Yamashita, T.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

T. Yamashita, M. Kagami, and H. Ito, “Waveguide shape control and loss properties of light-induced self-written (LISW) optical waveguides,” J. Lightwave Technol. 20(8), 1556–1562 (2002).
[Crossref]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Yariv, A.

Yonemura, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

Yoshimura, T.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
[Crossref]

N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
[Crossref]

Young, J. S.

J. S. Young and J. P. Kara, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20(6), 065005 (2011).
[Crossref]

Appl. Phys. Lett. (3)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

K. Yamashita, A. Kitanobou, M. Ito, E. Fukuzawa, and K. Oe, “Solid-state organic laser using self-written active waveguide with in-line fabry-perot cavity,” Appl. Phys. Lett. 92(14), 143305 (2008).
[Crossref]

K. Dorkenoo, A. J. van Wonderen, H. Bulou, M. Romeo, O. Crégut, and A. Fort, “Time-resolved measurement of the refractive index for photopolymerization processes,” Appl. Phys. Lett. 83(12), 2474–2476 (2003).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (r-solnet) for z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quant. 17(3), 566–570 (2011).
[Crossref]

IEEE Photonic. Tech. L. (5)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonic. Tech. L. 16(3), 804–806 (2004).
[Crossref]

K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, “Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process,” IEEE Photonic. Tech. L. 16(3), 801–803 (2004).
[Crossref]

K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, and M. Kagami, “180 degree light path conversion device with tapered self-written waveguide for optical interconnection,” IEEE Photonic. Tech. L. 22(15), 1126–1128 (2010).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection between VCSEL and optical fiber with 45 degree mirror using green laser,” IEEE Photonic. Tech. L. 18(3), 532–534 (2006).
[Crossref]

H. Ozawa, Y. Obata, Y. Mimura, O. Mikami, and T. Shioda, “Self-written waveguide connection across diced waveguide gaps,” IEEE Photonic. Tech. L. 18(7), 880–882 (2006).
[Crossref]

IEEE Sens. J. (1)

A. Cusano, A. Cutolo, M. Giordano, and L. Nicolais, “Optoelectronic refractive index measurements: Application to smart processing,” IEEE Sens. J. 3(6), 781–787 (2003).
[Crossref]

IEICE Trans. Electron. (1)

M. Kagami, T. Yamashita, M. Yonemura, and T. Matsui, “Light-induced self-written optical waveguides,” IEICE Trans. Electron. E90-C(5), 1061–1070 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

K. W. Cheng, M. A. Uddin, H. P. Chan, and S. C. Chan, “Optical alignment tolerances in double-side irradiated self-written waveguide-induced fiber arrays packages,” Opt. Commun. 283(13), 2669–2675 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (4)

B. Pinto-Iguanero, A. Olivares-Pérez, and I. Fuentes-Tapia, “Holographic material film composed by norland noa 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

L. Goldenberg, O. Sakhno, and J. Stumpe, “Application of norland adhesive for holographic recording,” Opt. Mater. 27(8), 1379–1385 (2005).
[Crossref]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” Opt. Mater. 31(4), 640–646 (2009).
[Crossref]

Phys. Rev. Lett. (1)

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93(14), 143905 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

N. Hirose, T. Yoshimura, and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 4640, 64–71 (2002).
[Crossref]

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, O. Watanabe, and M. Tomiki, “Photopolymer-based three-dimensional optical waveguide devices,” Proc. SPIE 8258, 825812 (2012).
[Crossref]

Smart Mater. Struct. (1)

J. S. Young and J. P. Kara, “A self-repairing polymer waveguide sensor,” Smart Mater. Struct. 20(6), 065005 (2011).
[Crossref]

Synth. Met. (1)

M. Hocine, R. Bachelot, C. Ecoffet, N. Fressengeas, P. Royer, and G. Kugel, “End-of-fiber polymer tip: Manufacturing and modeling,” Synth. Met. 127(1-3), 313–318 (2002).
[Crossref]

Other (1)

A. D. Yablon, “Splice measurement and characterization,” in Optical Fiber Fusion Splicing (Springer Berlin Heidelberg, 2005), pp. 183–202.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the empirical model: a cylindrical waveguide core (diameter d, length l, uniform refractive index) located between 2 standard SMF-28 fibers. In a first step, the cladding RI is kept constant and the core RI is varied while in a second step, the core RI is kept constant and the cladding RI is varied. The output of the simulation is the total power transmitted (T) into the rightmost fiber.
Fig. 2
Fig. 2 (a) Setup for determining the refractive index of a polymer material at 1550 nm during curing based on the Fresnel reflections at the fiber end-face and polymer interface. (b) Recorded RI of OrmoClad, OCore and NOA 68 materials (dashed graphs) measured as a function of UV exposure time at a uniform power density (7 mWcm−2, 365 nm for Ormoclad and OCore; 2 mWcm−2, 365 nm for NOA 68). A simple theoretical exponential dependence fitted to the experimental data is superimposed as the solid line on the graph.
Fig. 3
Fig. 3 Simulated SWW transmission as a function of core-cladding refractive index difference Δn. (a) Core formation: Δn increase due to polymerization of the core when the surrounding cladding remains unpolymerized; (b) Δn decrease due to polymerization of the cladding after material substitution when the RI of the already polymerized core remains constant.
Fig. 4
Fig. 4 (a) Fiber-based experimental setup for monitoring the insertion loss (at 1550 nm) of a fiber-SWW-fiber structure in real-time during fabrication. (b) Schematic representation of the different steps of the SWW formation process using Ormocer .
Fig. 5
Fig. 5 Evolution of the insertion loss as a function of process time during the formation of the core and the cladding for 50 µm and 100 µm long SWW connections. The dashed lines represent experimental data of several identical experiments while the solid line represents the prediction from the empirical model.
Fig. 6
Fig. 6 Microscope (left) and SEM image (right) of the SWW structure after removal of the unpolymerized OCore material. A longer waveguide was fabricated for easier visualization.
Fig. 7
Fig. 7 Millimeters long SWW structure fabricated in Ormocer .
Fig. 8
Fig. 8 The leftmost plots show the near-field profile at the end-face of the SMF-28 fiber (recorded at 405nm) for 1 µW and 10 µW power in the fiber (1 camera pixel corresponds to 110 nm; the color bar shows intensity in arbitrary units). The rightmost plots show corresponding cross-sections of the near-field profiles plot along the 2 diagonals for which the highest non-uniformity in the beam can be observed.
Fig. 9
Fig. 9 Simulated SWW transmission as a function of RI difference Δn, for graded index NOA 68 waveguides.
Fig. 10
Fig. 10 Evolution of the insertion loss as a function of process time for NOA68 based SWWs during several identical experiments (SWW length = 50 µm).
Fig. 11
Fig. 11 Comparison of the refractive index profiles of the SWW structures: a nearly step-index profile for the 2-material system using Ormocers and a graded-index profile for the single material system using NOA 68. The spike in the NOA 68 graph at radial position 0 µm results from the calculation algorithm artifact at this position and is therefore not physical.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n(t)= n 0 +Δ n { 1exp[ 1 U 0 0 t τ r | E( t ' ) | 2 d t ' ] }
n(t)= n 0 +Δ n { 1exp[ t τ r τ ] },

Metrics