Abstract

An ISO certified laser-induced damage threshold testing method was applied to characterize photopolymers widely used in 3D laser micro/nano-lithography. For the first time, commercial as well as custom made materials, including epoxy based photoresist (SU-8), hybrid organic-inorganic polymers (OrmoComp and SZ2080), thermopolymer (PDMS) and pure acrylate (PMMA), are investigated and directly compared. The presence of photoinitiator molecules within host matrix clearly indicating the relation between damage threshold and absorption of light is revealed. To simulate single- and multiphoton absorption processes optical resistance measurements were carried out at both fundamental (1064 and 1030 nm) and second harmonic (532 and 515 nm) wavelengths with laser pulse duration’s representing nanosecond and femtosecond regimes. Damage morphology differences from post mortal microscopic analysis were used to enrich the discussion about the possible breakdown mechanisms. The obtained characteristic values of damage threshold reveal potential of photopolymers and their possible applications in high power lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses

Ričardas Buividas, Sima Rekštytė, Mangirdas Malinauskas, and Saulius Juodkazis
Opt. Mater. Express 3(10) 1674-1686 (2013)

Three-dimensional multi-photon direct laser writing with variable repetition rate

Joachim Fischer, Jonathan B. Mueller, Johannes Kaschke, Thomas J. A. Wolf, Andreas-Neil Unterreiner, and Martin Wegener
Opt. Express 21(22) 26244-26260 (2013)

Modeling the effect of nanosecond laser conditioning on the femtosecond laser-induced damage of optical films

Zehan Li, Juan Du, Yuanan Zhao, Yueliang Wang, Yuxin Leng, and Jianda Shao
Opt. Express 23(11) 14774-14783 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref] [PubMed]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
    [Crossref]
  3. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
    [Crossref]
  4. J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
    [Crossref]
  5. A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
    [Crossref]
  6. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
    [Crossref] [PubMed]
  7. Q.-D. Chen, X.-F. Lin, L.-G. Niu, D. Wu, W.-Q. Wang, and H.-B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Opt. Lett. 33, 2559–2561 (2008).
    [Crossref] [PubMed]
  8. X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
    [Crossref]
  9. Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).
  10. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
    [Crossref]
  11. V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, and B. Chichkov, “Realization of binary radial diffractive optical elements by two-photon polymerization technique,” Opt. Express 18, 25808–25814 (2010).
    [Crossref] [PubMed]
  12. M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
    [Crossref]
  13. Z.N. Tian, L.J. Wang, Q.D. Chen, T. Jiang, L. Qin, L.J. Wang, and H.B. Sun, “Beam shaping of edge-emitting diode lasers using a single double-axial hyperboloidal micro-lens,” Opt. Lett. 38(24), 5414–5417 (2013).
    [Crossref] [PubMed]
  14. S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
    [Crossref] [PubMed]
  15. J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Croanauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  16. D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
    [Crossref]
  17. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).
  18. A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012).
    [Crossref] [PubMed]
  19. K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
    [Crossref]
  20. S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
    [Crossref]
  21. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
    [Crossref]
  22. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B.J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23(22), 1745–1747 (1998).
    [Crossref]
  23. Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).
  24. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref]
  25. J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
    [Crossref]
  26. P.E. Dryer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys. A 77, 167–173 (2003).
  27. A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
    [Crossref]
  28. R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
    [Crossref]
  29. B.J. Garrison and R. Srinivasan, “Laser ablation or organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57(8), 2909–2914 (1985).
    [Crossref]
  30. P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
    [Crossref]
  31. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
    [Crossref]
  32. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
    [Crossref]
  33. C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
    [Crossref]
  34. L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
    [Crossref]
  35. S. Rėkštytė, M Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21, 17028–17041 (2013).
    [Crossref]
  36. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
    [Crossref] [PubMed]
  37. A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
    [Crossref]
  38. G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
    [Crossref]
  39. ISO 21254-2:2011, “Test methods for laser-induced damahe threshold-Part 2: Threshold determination,” Lasers and laser-related equipment, 2011.
  40. G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
    [Crossref]
  41. M. Fox, Optical Properties of Solids (Oxford University, 2001).
  42. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  43. K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
    [Crossref]
  44. C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [Crossref] [PubMed]
  45. M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
    [Crossref]
  46. A. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. 49, 175–190 (1997).
    [Crossref]
  47. R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
    [Crossref]
  48. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
    [Crossref] [PubMed]
  49. J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
    [Crossref]
  50. S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
    [Crossref]
  51. J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
    [Crossref]
  52. ŽukauskasA.MalinauskasM.KadysA.GervinskasG.SeniutinasG.KandasamyS.JuodkazisS., “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21(6), 6901–6909 (2013).
    [Crossref] [PubMed]

2013 (6)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
[Crossref]

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

S. Rėkštytė, M Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21, 17028–17041 (2013).
[Crossref]

Z.N. Tian, L.J. Wang, Q.D. Chen, T. Jiang, L. Qin, L.J. Wang, and H.B. Sun, “Beam shaping of edge-emitting diode lasers using a single double-axial hyperboloidal micro-lens,” Opt. Lett. 38(24), 5414–5417 (2013).
[Crossref] [PubMed]

2012 (3)

A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012).
[Crossref] [PubMed]

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

2011 (2)

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
[Crossref]

2010 (9)

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, and B. Chichkov, “Realization of binary radial diffractive optical elements by two-photon polymerization technique,” Opt. Express 18, 25808–25814 (2010).
[Crossref] [PubMed]

2008 (3)

Q.-D. Chen, X.-F. Lin, L.-G. Niu, D. Wu, W.-Q. Wang, and H.-B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Opt. Lett. 33, 2559–2561 (2008).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

2007 (1)

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

2006 (2)

C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
[Crossref]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14, 810–816 (2006).
[Crossref] [PubMed]

2005 (3)

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[Crossref]

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

2004 (2)

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

2003 (4)

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

P.E. Dryer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys. A 77, 167–173 (2003).

J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Croanauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

2000 (1)

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

1998 (2)

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B.J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23(22), 1745–1747 (1998).
[Crossref]

1997 (2)

1996 (1)

J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[Crossref]

1995 (1)

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1994 (1)

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

1989 (1)

P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
[Crossref]

1987 (1)

R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
[Crossref]

1986 (1)

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

1985 (1)

B.J. Garrison and R. Srinivasan, “Laser ablation or organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57(8), 2909–2914 (1985).
[Crossref]

1981 (1)

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

Atwater, H.A.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Atwater, J.H.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Balu, M.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Bataviciute, G.

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

Baudach, S.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Belfield, K.D.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Bickauskaite, G.

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

Bonse, J.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

Braren, B.

R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
[Crossref]

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

Brasselet, E.

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Brooks, B.

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

Bucka, S.

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

Camposeo, A.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Candeloro, P.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Carr, C.W.

C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Chen, C.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Chen, Q.D.

Chen, Q.-D.

J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[Crossref]

Q.-D. Chen, X.-F. Lin, L.-G. Niu, D. Wu, W.-Q. Wang, and H.-B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Opt. Lett. 33, 2559–2561 (2008).
[Crossref] [PubMed]

Chen, W.Y.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

Chichkov, B.

V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, and B. Chichkov, “Realization of binary radial diffractive optical elements by two-photon polymerization technique,” Opt. Express 18, 25808–25814 (2010).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Chichkov, B.N.

Chmel, A.

A. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. 49, 175–190 (1997).
[Crossref]

Cingolani, R.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Cody, G.D.

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

Cojoc, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Croanauer, C.

Cumming, B.P.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Das, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

de Angelis, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Demos, S.G.

C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Derose, C.T.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Di Fabrizio, E.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Doan, V.

Domann, G.

Dreyfys, R.W.

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

Dryer, P.E.

P.E. Dryer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys. A 77, 167–173 (2003).

Dyer, P.E.

P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
[Crossref]

Egbert, A.

Enami, Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Fang, H.-H.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Feit, M.D.

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Fourkas, J.T.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
[Crossref]

Fox, M.

M. Fox, Optical Properties of Solids (Oxford University, 2001).

Fröhlich, L.

Gadonas, R.

A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012).
[Crossref] [PubMed]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Gamaly, E.G.

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Garcia de Abajo, J.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Garrison, B.J.

B.J. Garrison and R. Srinivasan, “Laser ablation or organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57(8), 2909–2914 (1985).
[Crossref]

Gentile, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Gershgoren, E.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Goldstein, Y.

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Greenlee, C.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Grigas, P.

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

Grigonis, R.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Gu, M.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Guo, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Guo, R.

Hagan, D.J.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Hales, J.M.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Herman, W.N.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

Ho, P.T.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

Houbertz, R.

Huang, W.

Jen, A.K.-Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Jensen, L.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Jiang, T.

Juodkazis, S.

S. Rėkštytė, M Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21, 17028–17041 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Jupe, M.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Kachalov, D.

Kar, A.K.

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

Kautek, W.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[Crossref]

Kawata, S.

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

Kim, T.D.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Kong, H.J.

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Kosten, E.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Krüger, J.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[Crossref]

Ku, J.-F.

J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
[Crossref]

Kumagai, H.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Kumi, G.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

LaFratta, C.N.

C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
[Crossref]

Laza, S.C.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Lee, K.-S.

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Lee, S.H.

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Li, A.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Li, J.

Li, L.

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
[Crossref]

Li, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Liberale, C.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Lin, X.-F.

Lippert, T.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

Loychik, C.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Luo, J.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Mädebach, H.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

Makropoulu, M.I.

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

Malinauskas, M

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Martin, S.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

Maruo, S.

Mathine, D.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Matsuo, S.

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Melninkaitis, A.

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Midorikawa, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Mirauskas, J.

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

Misawa, H.

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Nakamura, O.

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Neves, A.A.R.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Niu, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Niu, L.-G.

Norwood, R.A.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Obara, M.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Oldershaw, G.A.

P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
[Crossref]

Osipov, V.

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Paipulas, D.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Park, S.H.

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Parsons, J.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Pavelyev, V.

Perry, M.D.

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Peyghambarian, N.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Pisignano, D.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

Polman, A.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Polo, M.

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Popall, M.

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

Qin, L.

Radousky, H.B.

C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

Reinhardt, C.

Rekštyte, S.

Rethfeld, B.

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

Ristau, D.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Rode, A.V.

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Rubenchik, A.M.

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Rutkauskas, M.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

Saba, M.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Sakellari, I.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Schafer, K.J.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Schröder-Turk, G.E.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Schulz, J.

Schwartz, B.J.

Šciuka, M.

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

Seeger, D.E.

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

Serafetinides, A.A.

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

Serbin, J.

Shore, B.W.

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sidhu, J.

P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
[Crossref]

Sirutkaitis, V.

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Skordoulis, C.D.

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

Smalakys, L.

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

Song, J.-F.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Spinelli, P.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Srinivasan, R.

R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
[Crossref]

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

B.J. Garrison and R. Srinivasan, “Laser ablation or organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57(8), 2909–2914 (1985).
[Crossref]

Starke, K.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

Stuart, B.C.

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sun, H.B.

Sun, H.-B.

J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260 (2010).
[Crossref]

Q.-D. Chen, X.-F. Lin, L.-G. Niu, D. Wu, W.-Q. Wang, and H.-B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Opt. Lett. 33, 2559–2561 (2008).
[Crossref] [PubMed]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[Crossref]

Sutcliffe, E.

R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
[Crossref]

Takada, K.

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[Crossref]

Tian, Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Tian, Z.N.

Tiedje, T.

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

Turner, M.D.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Urech, L.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Van de Groep, J.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Van Lare, C.

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

Van Stryland, E.W.

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Vrijen, R.

Wang, L.J.

Wang, R.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Wang, W.-Q.

Witzgall, G.

Wokaun, A.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

Wu, D.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Q.-D. Chen, X.-F. Lin, L.-G. Niu, D. Wu, W.-Q. Wang, and H.-B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Opt. Lett. 33, 2559–2561 (2008).
[Crossref] [PubMed]

Wu, S.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Wu, S.-Z.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

Xia, A.

Xiao, S.

Yablonovitch, E.

Yang, D.-Y.

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

Yang, H.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Yu, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

Zhai, X.

Zhang, Q.

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Zhang, R.

J.-F. Ku, Q.-D. Chen, R. Zhang, and H.-B. Sun, “Whispering-gallery-mode micro-disk lasers produced by femtosecond laser direct writing,” Opt. Lett. 15, 2871–2873 (2011).
[Crossref]

Žukauskas, A.

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
[Crossref]

A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012).
[Crossref] [PubMed]

V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, and B. Chichkov, “Realization of binary radial diffractive optical elements by two-photon polymerization technique,” Opt. Express 18, 25808–25814 (2010).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref]

Adv. Mater. (2)

L. Li, E. Gershgoren, G. Kumi, W.Y. Chen, P.T. Ho, W.N. Herman, and J.T. Fourkas, “High-performance micror-ing resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. 20, 3668–3671 (2008).
[Crossref]

S.C. Laza, M. Polo, A.A.R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24, 1304–1308 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

P.E. Dryer, “Excimer laser polymer ablation: twenty years on,” Appl. Phys. A 77, 167–173 (2003).

Appl. Phys. B (1)

P.E. Dyer, G.A. Oldershaw, and J. Sidhu, “CO2 laser ablative etching of polyethylene terephthalate,” Appl. Phys. B 48, 489–493 (1989).
[Crossref]

Appl. Phys. B. (1)

S. Juodkazis, A.V. Rode, E.G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B. 77, 361–368 (2003).
[Crossref]

Appl. Phys. Lett. (8)

R. Srinivasan, E. Sutcliffe, and B. Braren, “Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses,” Appl. Phys. Lett. 51, 1285 (1987).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[Crossref]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting,” Appl. Phys. Lett. 86, 071122 (2005).
[Crossref]

S.H. Park, S.H. Lee, D.-Y. Yang, H.J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 1–3 (2005).
[Crossref]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beams generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 1–3 (2010).
[Crossref]

J.H. Atwater, P. Spinelli, E. Kosten, J. Parsons, C. Van Lare, J. Van de Groep, J. Garcia de Abajo, A. Polman, and H.A. Atwater, “Microphotonic parabolic light directors fabricated by two-photon lithography,” Appl. Phys. Lett. 99, 1–3 (2011).
[Crossref]

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103, 181122 (2013).
[Crossref]

Appl. Surf. Sci. (4)

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methylmethacrylate,” Appl. Surf. Sci. 154–155, 555–560 (2000).
[Crossref]

J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[Crossref]

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247, 406–411 (2005).
[Crossref]

A.A. Serafetinides, C.D. Skordoulis, M.I. Makropoulu, and A.K. Kar, “Picosecond and subpicosend visible laser ablation of optically transparent polymers,” Appl. Surf. Sci. 135, 276–284 (1998).
[Crossref]

J. Appl. Phys. (1)

B.J. Garrison and R. Srinivasan, “Laser ablation or organic polymers: microscopic models for photochemical and thermal processes,” J. Appl. Phys. 57(8), 2909–2914 (1985).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (2)

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12, 1–4 (2010).

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 1–8 (2010).

J. Photoch. Photobio. A (1)

K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photoch. Photobio. A 162, 497–502 (2004).
[Crossref]

Lith. J. Phys. (1)

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys. 50, 135–140 (2010).
[Crossref]

Macromolecules (1)

R. Srinivasan, B. Braren, D.E. Seeger, and R.W. Dreyfys, “Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 and 248 nm,” Macromolecules 19(3), 916–921 (1986).
[Crossref]

Mater. Sci. Eng. (1)

A. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. 49, 175–190 (1997).
[Crossref]

Microelectron. Eng. (1)

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. de Angelis, and E. Di Fabrizio, “Optical microstructures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[Crossref]

Nat. Photonics (1)

M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schröder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Nature (1)

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optics coefficients,” Nature 1, 180–185 (2007).

Opt. Express (4)

Opt. Lett. (6)

P. Natl. Acad. Sci. USA (1)

C.N. LaFratta, L. Li, and J.T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” P. Natl. Acad. Sci. USA 103(23), 8589–8594 (2006).
[Crossref]

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–33 (2013).
[Crossref]

Phys. Rev. Lett. (4)

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref] [PubMed]

G.D. Cody, T. Tiedje, B. Brooks, and Y. Goldstein, “Disorder and the optical-absorption edge of hydrogenated amorphous silicon,” Phys. Rev. Lett. 47, 1480 (1981).
[Crossref]

C.W. Carr, H.B. Radousky, and S.G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[Crossref] [PubMed]

B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Melninkaitis, M. Ščiuka, G. Batavičiūtė, J. Mirauskas, S. Bucka, and V. Sirutkaitis, “Automated test station for characterization of optical resistance with ultrashort pulses at multi kilohertz repetition rates,” Proc. SPIE 8530, 85301M (2012).
[Crossref]

Rev. Sci. Instrum. (1)

G. Batavičiūtė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84, 045108 (2013).
[Crossref]

Other (4)

ISO 21254-2:2011, “Test methods for laser-induced damahe threshold-Part 2: Threshold determination,” Lasers and laser-related equipment, 2011.

M. Jupe, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, R. Grigonis, and V. Sirutkaitis, “Quantized behavior of LIDT in the fs-range in dielectric layers,” Proc. SPIE5647(2005).
[Crossref]

M. Fox, Optical Properties of Solids (Oxford University, 2001).

ŽukauskasA.MalinauskasM.KadysA.GervinskasG.SeniutinasG.KandasamyS.JuodkazisS., “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21(6), 6901–6909 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measured transmittance of the photopolymers thin films (solid line shows the transmittance of the soda-lime glass substrate used for the LIDT measurements whereas shaded area shows the transmittance of the UV FS substrate used for the spectrophotometric measurements).
Fig. 2
Fig. 2 A histogram plot showing the LIDT of the photopolymers thin films at ns regime (AOI = 0 deg, f = 50 Hz, τ = 11 ns and 6.2 ns, ω = 250.2 ± 10.0 μm and 133.5 ± 4.6 μm respectively for the first (1064 nm) and second (532 nm) harmonics).
Fig. 3
Fig. 3 Nomarski microscope images of the laser-induced damage morphology at single-shot regime (a) and damage profile of the PDMS at fs pulse regime and 515 nm wavelength along dashed line in asterisk symbol marked picture (b). Colored and numbered framed boxes highlight different types of morphology: green (1) – catastrophic damage: delamination and coating removal, blue (2) – absorption centers induced breaks, red (3) – heat affected damage: increase of refractive index or thin film height and black (4) – surface swelling and evaporation. Note the difference of scales at ns and fs pulse regimes. Numbered areas in (b) picture shows non-affected zone of the polymer after laser irradiation (1), region of surface swelling (2) and concave pit formed during evaporation of few hundreds nanometers of top polymer layer (3).
Fig. 4
Fig. 4 A histogram plot showing the LIDT values of the photopolymers thin films at fs regime (AOI = 0 deg, f = 50 kHz, τ = 343 fs, ω = 65.0 ± 0.2 μm and 46.5 ± 0.2 μm respectively for the first (1030 nm) and second (515 nm) harmonics).
Fig. 5
Fig. 5 LIDT dependence on polymers optical band-gap energy at 515 nm (a) and 1030 nm (b) wavelength after fs pulse duration laser irradiation. Dashed blue line in the graph (a) is a guideline for the eye which indicates the increase of the LIDT at the point where n + 1 instead of n photons are required for the absorption. Numbers in brackets depict the number of photopolymer: 1 – SZ2080, 2 – SZ2080 + PI, 3 – OrmoComp, 4 – SU-8, 5 – PDMS and 6 – PMMA.

Tables (4)

Tables Icon

Table 1 Preparation of the photopolymers thin films (v – spin-coating velocity, t – time, T – temperature, λ – wavelength).

Tables Icon

Table 2 LIDT testing conditions (τ – pulse duration, λ – laser wavelength, f – repetition rate and ω – beam diameter measured at 1/e2 fluence level at target plane).

Tables Icon

Table 3 Physical and optical properties of the polymers thin films: l – thickness, Tg – glass-liquid transition temperature, Tm – melting temperature, λT – wavelength at which transmittance is over 85 %, n – refractive index at 632.8 nm wavelength (data taken from polymers manufactures data sheets), α – absorption coefficient at 532 nm wavelength and Eg – optical band-gap energy.

Tables Icon

Table 4 LIDT values (J/cm2) of the investigated polymers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ln [ T / ( 1 R ) ] l ,

Metrics