Abstract

Tm3+/Yb3+ codoped NaY(WO4)2 microstructures with various Tm3+ concentrations and 10 mol% Yb3+ concentration and 1 mol% Er3+/10 mol% Yb3+ codoped NaY(WO4)2 microstructure were prepared via a microwave-assisted hydrothermal reaction. The crystal structure and microscopic morphology of the products were characterized by means of XRD and FM-SEM. Er3+/Yb3+ doped NaY(WO4)2 microstructure was used as temperature sensing probe for studying on the laser heating behavior in Tm3+/Yb3+ doped NaY(WO4)2 microstructures. It was found that higher laser excitation density resulted in higher sample temperature, and the sample with higher Tm3+ doping concentration exhibited more obvious heating effect when excited by 980 nm laser. Moreover, the time scanning upconversion spectra displayed that the upconversion luminescence intensities for both the samples with low and high Tm3+ concentrations almost unchanged with 980 nm laser irradiation time when the excitation power density was lower, but decreased greatly when the excitation power density was higher, and the sample with low Tm3+ concentration displayed larger luminescence intensity change rate. This phenomenon was explained by Arrhenius’s model for the thermal quenching process.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of microstructures and the stability of white emissions in NaLuF4:Yb3+, Ho3+, Tm3+ upconversion crystals

Jiancheng Sun, Haoyue Hao, Weijiang Xu, Yinglin Song, Yuxiao Wang, and Xueru Zhang
Opt. Mater. Express 8(4) 1043-1057 (2018)

Effect of Ce3+ doping on the spectroscopic properties and 1.55 μm laser operation of Er:Yb:Ce:NaY(WO4)2 crystal

J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang
J. Opt. Soc. Am. B 27(12) 2605-2611 (2010)

Continuous-wave laser operation of Tm and Ho co-doped NaY(WO4)2 and NaLu(WO4)2 crystals

X. Han, F. Fusari, M. D. Serrano, A. A. Lagatsky, J. M. Cano-Torres, C. T. A. Brown, C. Zaldo, and W. Sibbett
Opt. Express 18(6) 5413-5419 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Li, G. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27(6), 394–396 (2002).
    [Crossref] [PubMed]
  2. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
    [Crossref]
  3. D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
    [Crossref]
  4. M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
    [Crossref] [PubMed]
  5. H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).
  6. J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
    [Crossref] [PubMed]
  7. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
    [Crossref] [PubMed]
  8. K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
    [Crossref]
  9. H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
    [Crossref]
  10. H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
    [Crossref]
  11. R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
    [Crossref]
  12. C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
    [Crossref]
  13. T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
    [Crossref]
  14. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
    [Crossref]
  15. R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
    [Crossref]
  16. S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
    [Crossref]
  17. R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
    [Crossref]
  18. R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
    [Crossref]
  19. D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
    [Crossref]
  20. Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
    [Crossref]
  21. J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
    [Crossref]
  22. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
    [Crossref]
  23. C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
    [Crossref]
  24. L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
    [Crossref]
  25. J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
    [Crossref]
  26. S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
    [Crossref]
  27. L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
    [Crossref]
  28. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
    [Crossref]
  29. H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
    [Crossref] [PubMed]
  30. Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
    [Crossref]
  31. Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
    [Crossref]
  32. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  33. B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
    [Crossref]
  34. B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
    [Crossref]

2014 (2)

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

2013 (6)

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

2012 (10)

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

2011 (3)

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
[Crossref]

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

2010 (4)

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
[Crossref]

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

2008 (2)

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

2006 (1)

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

2005 (1)

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

2004 (1)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

2003 (1)

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

2002 (1)

2000 (1)

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

1998 (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Baxter, G. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Bettinelli, M.

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Boyer, J. C.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Bu, Y.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Cao, W. W.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Capobianco, J. A.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Chen, B. J.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Chen, H.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

Chen, H. Q.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Chen, Y. H.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Chen, Y. M.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Cheng, L. H.

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Chu, P. K.

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Collins, S. F.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Cuccia, L. A.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

de Araújo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Deng, K. M.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Dey, R.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Ding, J. W.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Dong, B.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Du, G. Q.

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Duan, C. K.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Duan, Z. F.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Feng, L.

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Fu, S. B.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Giri, N. K.

K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
[Crossref]

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Guo, H.

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

He, C.

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

He, H. C.

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

Hinklin, T.

Hua, R. N.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

Igarashi, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Ihara, M.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Isobe, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Ji, H. F.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Jiang, G. C.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Jiang, T.

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

Jun Si, Z.

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

Khaidukov, N. M.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Krupa, J. C.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Kumar, K.

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
[Crossref]

Kusunoki, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Lai, B. Y.

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Laine, R. M.

Li, B.

Li, D.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

Li, D. Y.

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Li, F.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Li, J. J.

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Li, L.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Li, R. M.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Li, X. P.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Li, Z. S.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Lin, M.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Lin, Y. H.

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

Liu, B. Q.

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Liu, J. T.

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Liu, L.

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Liu, L. H.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Liu, M.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Liu, Q.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Liu, S. S.

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

Lu, J. W.

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

Lu, T. J.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Makhov, V. N.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Miao, J. P.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Min, Y.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Mishra, K.

K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
[Crossref]

Naccache, R.

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Nan, C. W.

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

Ohno, K.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Pandey, A.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Pandozzi, F.

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Patra, A.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Qiao, Y. M.

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

Qin, F.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Qin, W. P.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

Rai, A.

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

Rai, S. B.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
[Crossref]

S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
[Crossref]

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

Rai, V. K.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Rakov, N.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Rand, S. C.

Senna, M.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Shen, Y.

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
[Crossref]

Song, B.

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

Song, W. Y.

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

Song, Y. L.

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Speghini, A.

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Su, Q.

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Sun, C. Q.

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Sun, J. S.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Sun, M.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Tian, B. N.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Tian, Y.

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Verma, R. K.

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

Vetrone, F.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

Wade, S. A.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Wang, D. Y.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Wang, J.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Wang, L.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Wang, L. L.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

Wang, S. Q.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Wang, X.

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Wang, Y. X.

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Wang, Y. Z.

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

Wei, H.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Wei, X. Y.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Williams, G.

Wu, Y.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Xia, H. P.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Xia, S. D.

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

Xia, Y. Q.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Xiao, S.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Xiao, S. C.

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

Xu, F.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Xu, J.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Xu, L.

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

Yang, K.

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Yang, K. S.

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

Yang, L. W.

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Yang, X.

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Yin, M.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Yu, H. Q.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Yu, J.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Yu, J. C.

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

Yu, N. S.

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Yu, Y.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Yuan, F.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Zhai, X. S.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

Zhang, J. S.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Zhang, M. L.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Zhang, X. F.

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Zhang, X. Q.

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

Zhang, X. R.

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Zhang, Y. Y.

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Zhang, Z. G.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Zhao, D.

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

Zhao, L. H.

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

Zhao, Y.

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Zheng, C. B.

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Zheng, H.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Zheng, J. F.

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

Zhong, H.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Zhong, H. Y.

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

Zhong, J. X.

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Zhou, S. S.

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Appl. Phys. B (3)

K. Mishra, N. K. Giri, and S. B. Rai, “Preparation and characterization of upconversion luminescent Tm3+/Yb3+ co-doped Y2O3 nanophosphor,” Appl. Phys. B 103(4), 863–875 (2011).
[Crossref]

S. K. Singh, K. Kumar, and S. B. Rai, “Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater,” Appl. Phys. B 100(3), 443–446 (2010).
[Crossref]

X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method,” Appl. Phys. B 93(4), 801–807 (2008).
[Crossref]

Appl. Phys. Lett. (2)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Appl. Phys. Lett. 76(12), 1549–1551 (2000).
[Crossref]

Biotechnol. Adv. (1)

M. Lin, Y. Zhao, S. Q. Wang, M. Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu, and T. J. Lu, “Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications,” Biotechnol. Adv. 30(6), 1551–1561 (2012).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

C. B. Zheng, Y. Q. Xia, F. Qin, Y. Yu, J. P. Miao, Z. G. Zhang, and W. W. Cao, “Upconversion emission from amorphous Y2O3:Tm3+, Yb3+ prepared by nanosecond pulsed laser irradiation,” Chem. Phys. Lett. 509(1-3), 29–32 (2011).
[Crossref]

Chin. Chem. Lett. (1)

H. Q. Chen, J. Xu, F. Yuan, Y. Wu, Y. Y. Zhang, and L. Wang, “A “turn-off” luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors,” Chin. Chem. Lett. 24(1), 79–81 (2013).
[Crossref]

Chin. J. Chem. Phys. (1)

H. Guo, Y. M. Qiao, J. F. Zheng, and L. H. Zhao, “Upconversion luminescence of SrTiO3:Er3+ ultrafine powders produced by 785 nm laser,” Chin. J. Chem. Phys. 21, 233–238 (2008).

CrystEngComm (1)

Y. Tian, B. J. Chen, R. N. Hua, N. S. Yu, B. Q. Liu, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, B. N. Tian, and H. Zhong, “Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties,” CrystEngComm 14(5), 1760–1769 (2012).
[Crossref]

J. Alloy. Comp. (3)

Y. Shen, X. Wang, H. C. He, Y. H. Lin, and C. W. Nan, “Effects of Sm3+ doping on the temperature-dependent fluorescence intensity ratio of Er3+, Sm3+-co doped-yttria stabilized zirconia,” J. Alloy. Comp. 536, 161–165 (2012).
[Crossref]

H. Chen, X. S. Zhai, D. Li, L. L. Wang, D. Zhao, and W. P. Qin, “Water-soluble Yb3+,Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging,” J. Alloy. Comp. 511(1), 70–73 (2012).
[Crossref]

D. Y. Wang, Y. Min, S. D. Xia, V. N. Makhov, N. M. Khaidukov, and J. C. Krupa, “Upconversion fluorescence of Nd3+ ions in K2YF5 single crystal,” J. Alloy. Comp. 361(1-2), 294–298 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

J. Colloid Interface Sci. (1)

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, S. B. Fu, H. Zhong, B. Dong, R. N. Hua, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

J. Fluor. Chem. (1)

T. Jiang, W. Y. Song, S. S. Liu, and W. P. Qin, “Synthesis and upconversion luminescence properties study of NaYbF4:Tm3+ crystals with different dopant concentration,” J. Fluor. Chem. 140, 70–75 (2012).
[Crossref]

J. Lumin. (2)

R. K. Verma, A. Rai, K. Kumar, and S. B. Rai, “Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+: MO-Al2O3 (M=Ca, Sr and Ba) phosphors,” J. Lumin. 130(7), 1248–1253 (2010).
[Crossref]

L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

J. Mater. Chem. C (1)

B. N. Tian, B. J. Chen, Y. Tian, X. P. Li, J. S. Zhang, J. S. Sun, H. Y. Zhong, L. H. Cheng, S. B. Fu, H. Zhong, Y. Z. Wang, X. Q. Zhang, H. P. Xia, and R. N. Hua, “Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors,” J. Mater. Chem. C 1(12), 2338–2344 (2013).
[Crossref]

J. Phys. Chem. B (1)

F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

R. K. Verma and S. B. Rai, “Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1594–1600 (2012).
[Crossref]

J. Rare Earths (2)

C. He, K. S. Yang, L. Liu, and Z. Jun Si, “Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal,” J. Rare Earths 31(8), 790–794 (2013).
[Crossref]

L. Xu, B. Song, S. C. Xiao, and J. W. Lu, “Up-conversion luminescence of Tm3+/Yb3+ co-doped oxy-fluoride glasses,” J. Rare Earths 28(2), 194–197 (2010).
[Crossref]

Mater. Chem. Phys. (2)

Y. Tian, R. N. Hua, J. C. Yu, J. S. Sun, and B. J. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2-3), 617–620 (2012).
[Crossref]

R. M. Li, L. Li, J. Wang, Z. S. Li, Q. Liu, J. Yu, X. F. Zhang, H. F. Ji, M. L. Zhang, H. Wei, and L. H. Liu, “Influence of morphology and Yb3+ concentration on blue and red luminescence of uniform cube-like Y2O3:Yb3+/Tm3+ particles,” Mater. Chem. Phys. 141(2-3), 990–996 (2013).
[Crossref]

Mater. Res. Bull. (1)

J. J. Li, J. S. Sun, J. T. Liu, X. P. Li, J. S. Zhang, Y. Tian, S. B. Fu, L. H. Cheng, H. Y. Zhong, H. P. Xia, and B. J. Chen, “Pumping-route-dependent concentration quenching and temperature effect of green up- and down-conversion luminescence in Er3+/Yb3+ co-doped Gd2(WO4)3 phosphors,” Mater. Res. Bull. 48(6), 2159–2165 (2013).
[Crossref]

Opt. Commun. (2)

S. S. Zhou, K. M. Deng, X. Y. Wei, G. C. Jiang, C. K. Duan, Y. H. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

D. Y. Li, Y. X. Wang, X. R. Zhang, K. Yang, L. Liu, and Y. L. Song, “Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3,” Opt. Commun. 285(7), 1925–1928 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. J. Li, L. W. Yang, Y. Y. Zhang, J. X. Zhong, C. Q. Sun, and P. K. Chu, “Pump-power tunable white upconversion emission in lanthanide-doped hexagonal NaYF4 nanorods,” Opt. Mater. 33(6), 882–887 (2011).
[Crossref]

Sens. Actuators B Chem. (2)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 X-ray patterns for NaY(WO4)2 microstructures doped with x mol%Tm3+/10 mol%Yb3+ (x = 1 and 3), and the standard diffraction pattern in JCPDS card No.48-0886
Fig. 2
Fig. 2 FE-SEM images for NaY(WO4)2 microstructure codoped with 3.0 mol% Tm3+/10 mol% Yb3+ (a) low magnification, (b) high magnification.
Fig. 3
Fig. 3 Excitation-power-density-dependent up-conversion emission spectra of NaY(WO4)2:1.0% Tm3+ /10%Yb3+ under 980 nm excitation.
Fig. 4
Fig. 4 Dependences of blue and near infrared integrated UC emission intensities on the excitation power density for the samples doped with 1 mol% Tm3+ (a) and 3 mol% Tm3+ (b).
Fig. 5
Fig. 5 Dependence of Er3+ fluorescence intensity ratio on the sample temperature (squared dots); numerical fitting curve by using the theoretical formula R = C exp ( Δ E / k T ) (solid line). The insert (a) and (b) show the excitation and emission spectrum for Er3+/Yb3+ co-doped microstructure measured at room temperature.
Fig. 6
Fig. 6 (a) UC emission spectra for the mixture doped with various Tm3+ concentrations under 980 nm excitation; (b) normalized UC spectra plotted by using the data in Fig. 6(a).
Fig. 7
Fig. 7 Dependences of sample temperature on excitation power density and Tm3+ doping concentration.
Fig. 8
Fig. 8 Time scanning spectra for blue UC emission of NaY(WO4)2 microstructurs doped with 3 mol%Tm3+/10 mol%Yb3+ (a) and 0.3 mol%Tm3+/10 mol%Yb3+ (b) measured at excitation power density under excitation of 980 nm laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I u p = A P n
R = I H I S = C exp ( Δ E k T )
I ( T ) = I 0 / ( 1 + C e Δ E / k T )

Metrics