Abstract

K+–Na+ ion-exchanged channel waveguide has been fabricated in Nd3+ doped aluminum germanate (NMAG) glasses with potential photosensitive property. The channel waveguide exhibits single mode at 1.3μm and the mode field diameters were measured to be horizontally 10.1μm and vertically 5.3μm, respectively. Amplified spontaneous emissions (ASE) of 905, 1060, 1334 and 1816nm originating from the 4F3/2 level were recorded under ~800nm diode laser pumping and the maximum stimulated emission cross-sections for the 4F3/24I11/2 and 4F3/24I13/2 transitions are derived to be 21.5 × 10−21 and 7.6 × 10−21cm2, respectively. In addition, with 71.8% quantum efficiency and the largest emission intensity among various Nd3+ doping cases, 2wt% Nd2O3 is considered as the optimized doping concentration for the compact channel waveguide. The ion-exchanged Nd3+-doped NMAG glass channel waveguides offer favorable prospects for the development of optical waveguide amplifiers, broadband light sources and infrared UV-written grating waveguide lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Praseodymium ion doped K+–Na+ thermal ion-exchangeable waveguide-adaptive aluminum germanate glasses

J. X. Yang, B. J. Chen, E. Y. B. Pun, and H. Lin
Appl. Opt. 57(30) 9022-9031 (2018)

Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin
J. Opt. Soc. Am. B 26(2) 357-363 (2009)

Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery

B.J. Chen, L.F. Shen, E.Y.B. Pun, and H. Lin
Opt. Express 20(2) 879-889 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
    [Crossref] [PubMed]
  2. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
    [Crossref] [PubMed]
  3. X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, “Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/2→4I9/2 of Nd3+ ions,” Opt. Mater. Express 4(3), 458–463 (2014).
    [Crossref]
  4. S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4-mum amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25(11), 817–819 (2000).
    [Crossref] [PubMed]
  5. Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
    [Crossref] [PubMed]
  6. R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
    [Crossref]
  7. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16(16), 11894–11906 (2008).
    [Crossref] [PubMed]
  8. F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
    [Crossref]
  9. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
    [Crossref]
  10. C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
    [Crossref]
  11. M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
    [Crossref] [PubMed]
  12. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
    [Crossref] [PubMed]
  13. I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
    [PubMed]
  14. S. L. Li, P. G. Han, M. Shi, Y. C. Yao, B. Hu, M. W. Wang, and X. N. Zhu, “Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing,” Opt. Express 19(24), 23958–23964 (2011).
    [Crossref] [PubMed]
  15. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [Crossref]
  16. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  17. J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
    [Crossref]
  18. R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
    [Crossref]
  19. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
    [Crossref]
  20. T. Suzuki, H. Kawai, H. Nasu, S. Mizuno, H. Ito, K. Hasegawa, and Y. Ohishi, “Spectroscopic investigation of Nd3+-doped ZBLAN glass for solar-pumped lasers,” J. Opt. Soc. Am. B 28(8), 2001–2006 (2011).
    [Crossref]
  21. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
    [Crossref] [PubMed]
  22. A. R. Molla, A. Tarafder, S. Mukherjee, and B. Karmakar, “Transparent Nd3+ doped bismuth titanate glass- ceramic nanocomposites: Fabrication and properties,” Opt. Mater. Express 4(4), 843–863 (2014).
    [Crossref]
  23. B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
    [Crossref] [PubMed]
  24. M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
    [Crossref]
  25. U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
    [Crossref]
  26. E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
    [Crossref]
  27. L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
    [Crossref] [PubMed]
  28. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).
  29. A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
    [Crossref] [PubMed]
  30. K. S. Zou, H. T. Guo, M. Lu, W. N. Li, C. Q. Hou, W. Wei, J. F. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
    [Crossref] [PubMed]
  31. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
    [Crossref]
  32. M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
    [Crossref]
  33. Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
    [Crossref] [PubMed]
  34. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
    [Crossref]
  35. S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
    [Crossref]
  36. A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
    [Crossref]
  37. A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
    [Crossref]
  38. B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
    [Crossref] [PubMed]
  39. C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
    [Crossref]
  40. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
    [Crossref] [PubMed]
  41. D. P. Hand and P. St. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102 (1990).
    [Crossref] [PubMed]
  42. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
    [Crossref]
  43. D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
    [Crossref]
  44. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  45. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  46. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [Crossref]
  47. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [Crossref]
  48. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory, Argonne Illinois (1977).
  49. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
    [Crossref]
  50. C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
    [Crossref]
  51. C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
    [Crossref]
  52. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
    [Crossref]
  53. S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).
  54. D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
    [Crossref]
  55. E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
    [Crossref]
  56. K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
    [Crossref] [PubMed]
  57. G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
    [Crossref]
  58. G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
    [Crossref]
  59. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991).
    [Crossref]
  60. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
    [Crossref]
  61. J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
    [Crossref]
  62. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+ and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001).
    [Crossref]
  63. S. I. Najafi, Introduction to glass integrated optics (Artech House, 1992).

2014 (3)

2013 (3)

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

2012 (5)

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

2011 (6)

2010 (3)

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

2009 (6)

2008 (1)

2007 (4)

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

2006 (3)

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

2005 (3)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

2002 (2)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

2001 (2)

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+ and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001).
[Crossref]

2000 (3)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4-mum amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25(11), 817–819 (2000).
[Crossref] [PubMed]

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

1999 (3)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

1998 (2)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

1996 (2)

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

1994 (1)

1992 (1)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

1991 (1)

1990 (1)

1983 (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Abe, Y.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Ajo, D.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Aka, G.

Akhmadaliev, Sh.

Al-Saleh, M.

Anjos, V.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

Annapurna, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Azkargorta, J.

Babu, P.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Babu, S. S.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Balda, R.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Bastard, L.

Bell, M. J. V.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Bennetts, S.

Bettinelli, M.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Bettiol, A. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Bhutta, T.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Biswas, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Bohley, C.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Borrero-González, L. J.

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Broquin, J. E.

Caird, J. A.

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Casarin, M.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Charlet, B.

Chen, B. J.

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Chen, F.

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Chin, S. L.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Choi, J. H.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Dantas, N. O.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Daran, E.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

de Araújo, C. B.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref] [PubMed]

de Oliveira, M. A. S.

Diemeer, M. B. J.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Ding, X.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Dong, N. N.

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Driessen, A.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Feng, X.

Fernandez, J.

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Fernández, J.

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Fukudab, T.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

García-Revilla, S.

Gawith, C. B. E.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Geskus, D.

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Gonzalo, J.

Griscom, L. S.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Guo, H. T.

Han, P. G.

Hanada, T.

Hand, D. P.

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Hasegawa, K.

He, J. F.

Hemming, A.

Heo, J.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Honkanen, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Hosono, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Hou, C. Q.

Hu, B.

Hu, L. L.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Hua, P.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Hwang, B.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Iparraguirre, I.

Isaenko, L. I.

Ito, H.

Jackson, S. D.

Jang, K.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jang, K. H.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jayasankar, C. K.

I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
[PubMed]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Jha, A.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Jia, Y. C.

Jiang, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Jiang, S. B.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Jin, C. E.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jing, X.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Jorgensen, C. K.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Joshi, A. S.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Karmakar, B.

Kassab, L. R. P.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Kawai, H.

Kawazoe, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Kinser, D. L.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Kumar, G. N. H.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Kumar, K. U.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Kumar, V. V. R. K.

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Lancaster, D. G.

Leigh, M.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Li, S. L.

Li, W. N.

Li, X.

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Lin, H.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Liu, F.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Lozano B, W.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Lu, M.

Lu, Q. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Luo, T.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Ma, E.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Machewirth, D. P.

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Mandal, A. K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Margaryan, A.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Marques, M. S.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Mendioroz, A.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Menezes, L. S.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Merino, R. I.

Messaddeq, Y.

Miguel, A.

Mizuno, S.

Molla, A. R.

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Monte, A. F. G.

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Morea, R.

Mukherjee, S.

Muta, K.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Myers, M.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Naftaly, M.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Nasu, H.

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Nostrand, M. C.

Nunes, L. A. O.

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Nunzi-Conti, G.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ohishi, Y.

Orera, V. M.

Page, R. H.

Park, S. H.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Payne, S. A.

Peña, J. I.

Peng, B.

Pereira-da-Silva, M. A.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

Peyghambarian, N.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Pfau, C.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Pollnau, M.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Pozza, G.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Prasad, K. R.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Prathyusha, V. A.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Pun, E. Y. B.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Rajeswari, R.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Raju, C. N.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Ramponi, A. J.

Rao, J. L.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Ratnakaram, Y. C.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Ravi Kanth Kumar, V. V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Reddy, B. S.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Reddy, C. A.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Reichle, D. J.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Reisfeld, F.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Rhonehouse, D.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Ross, G. W.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Russell, P. St. J.

Sabella, A.

Sailaja, S.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Saliminia, A.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Sanz, M.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Schweizer, S.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Seifert, G.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Sengo, G.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Seo, H. J.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Serqueira, E. O.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Serrano, C.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Shanmugavelu, B.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Shepherd, D. P.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Shi, F. G.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Shi, M.

Skrzypczak, U.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Snitzer, E.

Song, F.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Song, J. H.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Sontakke, A. D.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Speghini, A.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Staver, P. R.

Sum, T. C.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Suzuki, T.

Takahashic, Y.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Tanabe, S.

Tarafder, A.

Tian, Y.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Uesugia, N.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Vallee, R.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

van Kan, J. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Vázquez de Aldana, J. R.

Venkata Krishnaiah, K.

Venkatramu, V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Venugopal Rao, S.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Vogel, E. M.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Wang, J.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Wang, J. S.

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, M. W.

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Watt, F.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Weeks, R. A.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Wei, W.

Wu, F.

Xiangli, B.

Xu, J.

X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, “Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/2→4I9/2 of Nd3+ ions,” Opt. Mater. Express 4(3), 458–463 (2014).
[Crossref]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Xu, R. R.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Xu, S.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Yang, D. L.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Yang, J.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Yang, Q. H.

Yanoa, R.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Yao, Y. C.

Yelisseyev, A. P.

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Zhang, C.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, G.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, J.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Zhang, J. J.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Zheng, L. H.

Zhou, S. Q.

Zhu, X. N.

Zou, K. S.

Appl. Phys. B (1)

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Appl. Phys. Lett. (4)

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Electron. Lett. (1)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Alloy. Comp. (1)

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

J. Appl. Phys. (5)

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

J. Cryst. Growth (1)

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

J. Less Common Met. (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (3)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

J. Mater. Sci. (1)

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

J. Non-Cryst. Solids (3)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. C (1)

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Opt. Eng. (1)

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Opt. Express (8)

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[Crossref] [PubMed]

S. L. Li, P. G. Han, M. Shi, Y. C. Yao, B. Hu, M. W. Wang, and X. N. Zhu, “Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing,” Opt. Express 19(24), 23958–23964 (2011).
[Crossref] [PubMed]

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16(16), 11894–11906 (2008).
[Crossref] [PubMed]

K. S. Zou, H. T. Guo, M. Lu, W. N. Li, C. Q. Hou, W. Wei, J. F. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
[Crossref] [PubMed]

I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
[PubMed]

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref] [PubMed]

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Opt. Mater. Express (2)

Phys. B (1)

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Phys. Lett. A (1)

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (2)

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Solid State Commun. (1)

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Other (2)

S. I. Najafi, Introduction to glass integrated optics (Artech House, 1992).

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory, Argonne Illinois (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption spectrum of 2wt% Nd2O3 doped NMAG glasses. Inset: Energy level diagram of Nd3+ in NMAG glasses.
Fig. 2
Fig. 2 (a) Emissions at the 1.065 and 1.337μm wavelengths in 2wt% Nd2O3 doped NMAG glasses. Inset: Relative emission intensities of different Nd2O3 doping concentration cases. (b) Stimulated emission cross-section profiles for 4F3/24I11/2 and 4F3/24I13/2 transitions in 2wt% Nd2O3 doped NMAG glasses. (c) Excitation spectrum for 1.065μm emission of 2wt% Nd2O3 doped NMAG glasses. (d) Fluorescence decay curve for the 4F3/2 level in 0.1wt% Nd2O3-doped NMAG glasses.
Fig. 3
Fig. 3 Fluorescence decay curves of the 4F3/2 level for 1wt% (a), 2wt% (b), 3wt% (c), and 4wt% (d) Nd2O3-doped NMAG glasses.
Fig. 4
Fig. 4 (a) Photograph of 2wt% Nd2O3 doped NMAG glasses under nature light. (b) Index profile at 632.8nm of slab waveguide by ion exchange at 390°C for 8 hours. (c) Prism coupler result measured at 632.8nm. (d) Prism coupler result measured at 1536nm.
Fig. 5
Fig. 5 (a) Photograph of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide with 532nm laser transmission. (b) AFM image of the channel section. (c) Near-field image of the channel waveguide at 1.3μm. (d) A 3D representation of the near-field mode pattern.
Fig. 6
Fig. 6 OSA spectra (a) and (b) recorded from the output end facet of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide under the excitation of ~800 nm wavelength laser pumping.

Tables (4)

Tables Icon

Table 1 Measured and calculated oscillator strengths of Nd3+ in NMAG glasses.

Tables Icon

Table 2 Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) of Nd3+ in various glasses.

Tables Icon

Table 3 Predicted spontaneous emission probabilities, branching ratios and radiative lifetime of Nd3+ in NMAG glasses.

Tables Icon

Table 4 Fluorescence lifetimes, quantum efficiencies, and cross-relaxation rates of Nd3+ in NMAG glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ em = A ij 8πc n 2 × λ 5 I(λ) λI(λ)dλ ,
τ= 0 tI( t )dt 0 I( t )dt ,
η q = τ exp τ rad ,
1/ τ exp =1/ τ rad + W MPR + W CR ,

Metrics