Abstract

First-principle study of bismuth-related oxygen-deficient centers (=Bi···Ge≡, =Bi···Si≡, and =Bi···Bi= oxygen vacancies) in Bi2O3–GeO2, Bi2O3–SiO2, Bi2O3–Al2O3–GeO2, and Bi2O3–Al2O3–SiO2 hosts is performed. A comparison of the calculation results with the experimental emission and excitation spectra of IR luminescence suggests that luminescence in the 1.2–1.3 μm and 1.8–3.0 μm ranges in Bi2O3–GeO2 glasses and crystals is likely caused by =Bi···Ge≡ and =Bi ···Bi= centers, respectively, and the luminescence near 1.1 μm in Bi2O3–Al2O3–GeO2 glasses and crystals may be caused by =Bi···Ge≡ center with (AlO4) center in the second coordination shell of Ge atom.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov
Opt. Mater. Express 3(8) 1059-1074 (2013)

On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+ and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass

Alexey N. Romanov, Zukhra T. Fattakhova, Alexander A. Veber, Olga V. Usovich, Elena V. Haula, Vladimir N. Korchak, Vladimir B. Tsvetkov, Lev A. Trusov, Pavel E. Kazin, and Vladimir B. Sulimov
Opt. Express 20(7) 7212-7220 (2012)

Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3

Mingying Peng, Jianrong Qiu, Danping Chen, Xiangeng Meng, and Congshan Zhu
Opt. Express 13(18) 6892-6898 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys. 40(3B), L279–L281 (2001).
    [Crossref]
  2. H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
    [Crossref]
  3. E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology 31(4), 681–688 (2013).
    [Crossref]
  4. E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics 40(4), 283–285 (2010).
    [Crossref]
  5. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
    [Crossref]
  6. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study,” Opt. Mater. Express 3(8), 1059–1074 (2013).
    [Crossref]
  7. F. Smet and W. J. P. van Enckevort, “In situ microscopic investigations of crystal growth processes in the system Bi2O3–GeO2,” J. Cryst. Growth 100(3), 417–432 (1990).
    [Crossref]
  8. Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).
  9. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
    [Crossref] [PubMed]
  10. X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
    [Crossref]
  11. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
    [Crossref]
  12. X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
    [Crossref] [PubMed]
  13. X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
    [Crossref]
  14. A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
    [Crossref]
  15. P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
    [Crossref]
  16. P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
    [Crossref]
  17. A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express 2(10), 1320–1328 (2012).
    [Crossref]
  18. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [Crossref] [PubMed]
  19. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
    [Crossref]
  20. P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
    [Crossref]
  21. K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand, 1979).
  22. C. E. Moore, “Atomic Energy Levels as Derived from the Analysis of Optical Spectra — Molybdenum through Lanthanum and Hafnium through Actinium,” in Nat. Stand. Ref. Data Ser. 35, Vol. III (Reprint of NBS Circ. 467, Vol. III, 1958), 245 pp. (Nat. Bur. Stand., 1971).
  23. W. A. Harrison, “Electronic Structure and Properties of Solids” (Freeman, 1980).

2014 (1)

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
[Crossref]

2013 (5)

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology 31(4), 681–688 (2013).
[Crossref]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study,” Opt. Mater. Express 3(8), 1059–1074 (2013).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
[Crossref]

2012 (4)

A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express 2(10), 1320–1328 (2012).
[Crossref]

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

2011 (4)

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
[Crossref] [PubMed]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

2010 (1)

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics 40(4), 283–285 (2010).
[Crossref]

2005 (1)

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

2004 (1)

2001 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys. 40(3B), L279–L281 (2001).
[Crossref]

1990 (1)

F. Smet and W. J. P. van Enckevort, “In situ microscopic investigations of crystal growth processes in the system Bi2O3–GeO2,” J. Cryst. Growth 100(3), 417–432 (1990).
[Crossref]

Bufetov, I. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
[Crossref] [PubMed]

Burkov, V. I.

Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).

Chen, D.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Dianov, E. M.

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study,” Opt. Mater. Express 3(8), 1059–1074 (2013).
[Crossref]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology 31(4), 681–688 (2013).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
[Crossref] [PubMed]

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics 40(4), 283–285 (2010).
[Crossref]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Ebendorff-Heidepriem, H.

Egorysheva, A. V.

Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).

Fan, X.

Firstov, S. V.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
[Crossref] [PubMed]

Firstova, E. G.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express 19(20), 19551(2011).
[Crossref] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys. 40(3B), L279–L281 (2001).
[Crossref]

Guo, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Guryanov, A. N.

Harrison, W. A.

W. A. Harrison, “Electronic Structure and Properties of Solids” (Freeman, 1980).

Herzberg, G.

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand, 1979).

Huber, K. D.

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand, 1979).

Jiang, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Kargin, Yu. F.

Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).

Khopin, V. F.

Li, H.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Li, H. J.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Liu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

Liu, J. F.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Manning, S.

Mar’in, A. A.

Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).

Meng, X.

Moore, C. E.

C. E. Moore, “Atomic Energy Levels as Derived from the Analysis of Optical Spectra — Molybdenum through Lanthanum and Hafnium through Actinium,” in Nat. Stand. Ref. Data Ser. 35, Vol. III (Reprint of NBS Circ. 467, Vol. III, 1958), 245 pp. (Nat. Bur. Stand., 1971).

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys. 40(3B), L279–L281 (2001).
[Crossref]

Nishchev, K. N.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

Panov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Plotnichenko, V. G.

Pynenkov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

Qiu, J.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

Smet, F.

F. Smet and W. J. P. van Enckevort, “In situ microscopic investigations of crystal growth processes in the system Bi2O3–GeO2,” J. Cryst. Growth 100(3), 417–432 (1990).
[Crossref]

Sokolov, V. O.

Su, L.

P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Su, L. B.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Sun, H.-T.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
[Crossref]

Tang, H.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

van Enckevort, W. J. P.

F. Smet and W. J. P. van Enckevort, “In situ microscopic investigations of crystal growth processes in the system Bi2O3–GeO2,” J. Cryst. Growth 100(3), 417–432 (1990).
[Crossref]

Wang, C.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

Wang, Q.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Winterstein, A.

Wondraczek, L.

A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express 2(10), 1320–1328 (2012).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Xu, J.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
[Crossref]

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Xu, X.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Yang, I.

Yang, Q.

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Yu, P.

P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Yu, P. S.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Zhan, Y.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Zhao, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Zhao, H. Y.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

Zheng, L.

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

X. Jiang, L. Su, X. Guo, H. Tang, X. Fan, Y. Zhan, Q. Wang, L. Zheng, H. Li, and J. Xu, “Near-infrared to mid-infrared photoluminescence of Bi2O3-GeO2 binary glasses,” Opt. Lett. 37(20), 4260–4262 (2012).
[Crossref] [PubMed]

Zhou, J.

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
[Crossref]

Zhu, C.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[Crossref] [PubMed]

J. Ceram. Soc. Japan (1)

P. Yu, L. Su, X. Guo, and J. Xu, “Near-infrared luminescence in Al doped Bi4Ge3O12 crystals,” J. Ceram. Soc. Japan 120(7), 265–267 (2012).
[Crossref]

J. Cryst. Growth (1)

F. Smet and W. J. P. van Enckevort, “In situ microscopic investigations of crystal growth processes in the system Bi2O3–GeO2,” J. Cryst. Growth 100(3), 417–432 (1990).
[Crossref]

J. Lightwave Technology (1)

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology 31(4), 681–688 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30–32), 2388–2393 (2005).
[Crossref]

J. Non-Crystalline Solids (1)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids 357(11–13), 2241–2245 (2011).
[Crossref]

Japan. J. Appl. Phys. (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Japan. J. Appl. Phys. 40(3B), L279–L281 (2001).
[Crossref]

Laser Phys. (2)

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2 binary glass system,” Laser Phys. 21(5), 901–905 (2011).
[Crossref]

X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu, “Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals,” Laser Phys. 23(10), 105812 (2013).
[Crossref]

Opt. Commun. (1)

P. Yu, L. Su, and J. Xu, “Near infrared photoluminescence of Mg, Ca doped Bi4Ge3O12 crystals and glasses,” Opt. Commun. 304, 19–22 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (2)

Opt. Materials (1)

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Materials 34(4), 675–678 (2012).
[Crossref]

Prog. Mater. Sci. (1)

H.-T. Sun, J. Zhou, and J. Qiu, “Recent advances in bismuth activated photonic materials,” Prog. Mater. Sci. 641–72 (2014).
[Crossref]

Quant. Electronics (2)

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics 40(4), 283–285 (2010).
[Crossref]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics 43(2), 174–176 (2013).
[Crossref]

Sci. China Technol. Sciences (1)

P. Yu, L. Su, H. Tang, X. Guo, H. Zhao, Q. Yang, and J. Xu, “Study on photoluminescence of thermally treated Bi12GeO20 and Mo:Bi12GeO20 crystals,” Sci. China Technol. Sciences 54(5), 1287–1291 (2011).
[Crossref]

Other (4)

Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, “Crystals Bi12MxO20+δ with the sillenite structure: Synthesis, structure, and properties” (MFTI, 2004).

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand, 1979).

C. E. Moore, “Atomic Energy Levels as Derived from the Analysis of Optical Spectra — Molybdenum through Lanthanum and Hafnium through Actinium,” in Nat. Stand. Ref. Data Ser. 35, Vol. III (Reprint of NBS Circ. 467, Vol. III, 1958), 245 pp. (Nat. Bur. Stand., 1971).

W. A. Harrison, “Electronic Structure and Properties of Solids” (Freeman, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 BiODCs in Bi2O3–GeO2: (a) =Bi···Ge≡; (b) =Bi···Bi=.
Fig. 2
Fig. 2 BiODCs levels and transitions: (a) =Bi···Ge≡ in GeO2; (b) =Bi···Bi= in GeO2; (c) =Bi···Ge≡ in Al2O3–GeO2; (d) =Bi···Si≡ in SiO2; (e) =Bi···Bi= in SiO2; (f) =Bi···Si≡ in Al2O3–SiO2. Level energies are given in 103 cm−1, transition wavelengths in μm.
Fig. 3
Fig. 3 The origin of the electron states of BiODCs in GeO2: (a) =Bi···Ge≡; (b) =Bi···Bi=. Level energies and splittings are given in 103 cm−1.

Metrics