Abstract

Femtosecond lasers can be used to write a variety of gradient index refractive devices. Writing devices with an arbitrary optical profile (i.e., freeform) requires knowing the functional dependence of the phase change that the wavefront will experience when passing through a region written under different exposure parameters. We measured this dependence as a function of writing speed and power in hydrogel-based contact lenses. Regions of constant refractive index change were written under different conditions and then the phase change was measured with a Mach-Zehnder interferometer and a phase retrieval algorithm. This functional dependence was tested by writing arbitrary Zernike polynomials with varying magnitudes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification

Gustavo A. Gandara-Montano, Len Zheleznyak, and Wayne H. Knox
Opt. Mater. Express 8(2) 295-313 (2018)

Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes

Gustavo A. Gandara-Montano, Vladimir Stoy, Miroslav Dudič, Václav Petrák, Kateřina Haškovcová, and Wayne H. Knox
Opt. Mater. Express 7(9) 3162-3180 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  3. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [Crossref] [PubMed]
  4. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26(19), 1516–1518 (2001).
    [Crossref] [PubMed]
  5. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
    [Crossref] [PubMed]
  6. G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
    [Crossref] [PubMed]
  7. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
    [Crossref] [PubMed]
  8. H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
    [Crossref]
  9. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
    [Crossref]
  10. L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
    [Crossref]
  11. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
    [Crossref] [PubMed]
  12. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
    [Crossref] [PubMed]
  13. L. Xu, W. H. Knox, and K. R. Huxlin, “Exogeneous and endogeneous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
    [Crossref]
  14. L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
    [Crossref] [PubMed]
  15. D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
    [Crossref] [PubMed]
  16. W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
    [Crossref]
  17. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978–983 (2002).
    [Crossref] [PubMed]
  18. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846–1848 (2004).
    [Crossref] [PubMed]
  19. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
    [Crossref]
  20. Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
    [Crossref]
  21. D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
    [Crossref] [PubMed]
  22. Johnson and Johnson Vision Care, Inc., “Package Insert,” http://www.acuvue.com/sites/default/files/content/us/pdf/AS-08-14-07.pdf , 3, Apr. 2015.
  23. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).
  24. D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
    [Crossref] [PubMed]
  25. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  26. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
    [Crossref]
  27. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  28. A. Kumar, Introduction to Solid State Physics, (PHI Learning Private Limited, 2010), Chap. 9.
  29. G. W. Wicks, Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, 14627 (personal communication 2012).
  30. K. B. Doyle, V. L. Genberg, and G. J. Michels, Integrated Optomechanical Analysis, (SPIE Press, 2012), Chap. 3.
  31. R. W. Gray, J. P. Rolland, Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, 14627 (personal communication 2012).
  32. D. Malacara, Optical Shop Testing (Wiley, 2007), Chap. 13.
  33. R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
    [Crossref] [PubMed]

2014 (3)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

2012 (1)

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
[Crossref]

2011 (3)

2010 (1)

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

2008 (3)

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
[Crossref] [PubMed]

2007 (4)

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
[Crossref]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1996 (1)

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

1982 (1)

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Applegate, R. A.

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Ballentine, C.

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Borrelli, N. F.

Brooks, D. R.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Brown, N. S.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Bühren, J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Chen, Q. D.

D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
[Crossref] [PubMed]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Corrielli, G.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Crespi, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Davis, K. M.

DeMagistris, M.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Ding, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ellis, J. D.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ersoy, O. K.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
[Crossref]

Fujimoto, J. G.

Geremia, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Gross, H.

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Haberkorn, N.

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

Hampp, N.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Hartl, I.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Heinzer, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Hirao, K.

Hirono, S.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
[Crossref]

Huxlin, K. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. Xu, W. H. Knox, and K. R. Huxlin, “Exogeneous and endogeneous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
[Crossref]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Ina, H.

Ippen, E. P.

Itoh, K.

Kim, H. C.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

Knox, W. H.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, and K. R. Huxlin, “Exogeneous and endogeneous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
[Crossref]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Kobayashi, S.

Kowalevicz, A. M.

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kuroda, D.

Kuroiwa, Y.

Li, Y.

Lin, X. F.

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

MacRae, S.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Mataloni, P.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Matsuda, K.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
[Crossref]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Minoshima, K.

Miura, K.

Mochizuki, H.

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
[Crossref]

Nagy, L. J.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Narita, Y.

Nishii, J.

Niu, L. G.

D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
[Crossref] [PubMed]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Osellame, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ramponi, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sandy Lee, I. Y.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Sansoni, L.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Santinelli, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Sarver, C. A.

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Sarver, E. J.

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Savage, D. E.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Sciarrino, F.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Srisungsitthisunti, P.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
[Crossref]

Streltsov, A. M.

Sugimoto, N.

Sun, H. B.

D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
[Crossref] [PubMed]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Takeda, M.

Takeshima, N.

Tanaka, S.

Träger, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Wang, C.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Wang, J.

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Wang, N.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Wang, R.

Watanabe, W.

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Wu, D.

D. Wu, L. G. Niu, Q. D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
[Crossref] [PubMed]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xia, H.

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Xu, L.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. Xu, W. H. Knox, and K. R. Huxlin, “Exogeneous and endogeneous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
[Crossref]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

Xu, X.

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
[Crossref]

Yamada, K.

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Zorn, M.

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

Appl. Phys. Lett. (2)

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett. 90(1), 011104 (2007).
[Crossref]

Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, and H. B. Sun, “Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 91(17), 171105 (2007).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using Blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

J. Laser Micro NanoEn. (1)

W. Watanabe, K. Matsuda, S. Hirono, and H. Mochizuki, “Writing speed dependency of femtosecond laser refractive index modification in poly(dimethylsiloxane),” J. Laser Micro NanoEn. 7(2), 171–175 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

Macromol. Biosci. (1)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014).
[Crossref] [PubMed]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. Express (2)

Optom. Vis. Sci. (1)

R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, “Visual acuity as a function of Zernike mode and level of root mean square error,” Optom. Vis. Sci. 80(2), 97–105 (2003).
[Crossref] [PubMed]

Proc. SPIE (2)

H. C. Kim, J. Träger, M. Zorn, N. Haberkorn, and N. Hampp, “Ophthalmic drug delivery utilizing two-photon absorption: A novel approach to treat posterior capsule opacification,” Proc. SPIE 6632, 66321E (2007).
[Crossref]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Rev. Sci. Instrum. (1)

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Other (8)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

A. Kumar, Introduction to Solid State Physics, (PHI Learning Private Limited, 2010), Chap. 9.

G. W. Wicks, Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, 14627 (personal communication 2012).

K. B. Doyle, V. L. Genberg, and G. J. Michels, Integrated Optomechanical Analysis, (SPIE Press, 2012), Chap. 3.

R. W. Gray, J. P. Rolland, Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, 14627 (personal communication 2012).

D. Malacara, Optical Shop Testing (Wiley, 2007), Chap. 13.

Johnson and Johnson Vision Care, Inc., “Package Insert,” http://www.acuvue.com/sites/default/files/content/us/pdf/AS-08-14-07.pdf , 3, Apr. 2015.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) A diagram showing the main elements of setup used for writing. The microscope objective, eyepiece, and tube lens can be used to see the written region while writing occurs. (b) Diagram of our Mach-Zehnder interferometer used for characterizing samples. Identical microscope objective are used in the sample arm and the reference arm.
Fig. 2
Fig. 2 (a) Written rectangles of constant phase. (b) Fringes taken with the interferometer to measure the induced phase change.
Fig. 3
Fig. 3 Retrieved phase map of region containing two rectangles of constant phase. The rectangles shown were written at 675 mW at 30 mm/s.
Fig. 4
Fig. 4 (a) Phase map without tilt removed. (b) Same phase map as in (a) but with tilt removed.
Fig. 5
Fig. 5 Sample with cover glass introducing wedge. This was done to validate the sign of the induced phase change in the sample from the writing.
Fig. 6
Fig. 6 (a) Distribution of pixels providing Δϕ in area surrounding the rectangle at the right in Fig. 3. The lower Δϕ contained in each column is (−0.0661 waves) + (0.005 waves)*(Column Number-1) while the upper Δϕ contained in each column is (−0.0661 waves) + (0.005 waves)*(Column Number). (b) Distribution of pixels providing Δϕ in area inside the rectangle at the right in Fig. 3. The lower Δϕ contained in each column is (−0.3815 waves) + (0.005 waves)*(Column Number-1) while the upper Δϕ contained in each column is (−0.3815 waves) + (0.005 waves)*(Column Number).
Fig. 7
Fig. 7 Measurements for–Δϕ in units of waves for rectangles written at 675 mW and 30 mm/s.
Fig. 8
Fig. 8 Delta phase measured for different powers at (a) 3 mm/s, (b) 5 mm/s, (c) 10 mm/s, (d) 15 mm/s, (e) 20 mm/s, (f) 30 mm/s, and (g) 40 mm/s. The red part of the fitting represents exposure parameters over which we observed sample damage.
Fig. 9
Fig. 9 Visualization of the calibration function, or equation, in 3D.
Fig. 10
Fig. 10 Areas in which Zernike polynomials were written.
Fig. 11
Fig. 11 (a) Phase map obtained when Z4 and piston were written. (b) Phase map obtained when Z5 and piston were written. (c) Phase map obtained when Z9 and piston were written. (d) Ideal structure containing only Z4 and piston. (e) Ideal structure containing only Z5 and piston. (f) Ideal structure containing only Z9 and piston.
Fig. 12
Fig. 12 Zernike decomposition (absolute value) of the structures written intended to have only Z4, Z5, and Z9 polynomials.
Fig. 13
Fig. 13 (a) Phase map obtained when three layers of Z10 and piston were written. (b) Ideal structure containing only Z10 and piston.
Fig. 14
Fig. 14 Zernike decomposition (absolute value) of the three-layered structure in which Z10 was written. The height of each column represents the average of that Zernike coefficient over the four copies that we wrote. The error bars represent the standard deviations of each Zernike coefficient over the four copies that we wrote.

Tables (2)

Tables Icon

Table 1 Signal and noise for the set of four copies of each written Zernike polynomial. (λ = 633 nm)

Tables Icon

Table 2 Coefficient for Z10 of structures with different amounts of phase change

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δϕ= (Δn)(d) λ ,
Δϕ=κ( 1 e γE ),
Δϕ=α( 1 e β P N v ),
σ= ( i (1+ δ 0,m ) 2(n+1) ( C i ) ) 1/2

Metrics