Abstract

An experimental investigation on the effects of Niobium and Antimony (Nb and Sb) on the radiation response of the multicomponent phosphate glass used for higher optical gain single mode fiber has been carried out. The samples were irradiated with γ-rays up to 20 kGy. Optical absorption spectra and Electron Paramagnetic Resonance (EPR) were employed to investigate the radiation-induced-defects. We found that the radiation induced attenuation (RIA) decrease with increasing Nb5+ and Sb3+ doping concentration. Only the phosphorus oxygen hole center (POHC) related EPR signals were observed in the Nb5+-doped samples. Both POHC and phosphorus-oxygen electron centers (POEC) related EPR signals decrease obviously with 1 mol % Sb2O3 doping concentration. These experimental results were interpreted by a model that is based on competition between various defects and Nb- or Sb-ions for the holes and electrons generated by the absorption of γ-rays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ESR study of samarium doped fluorophosphate glasses for high-dose, high-resolution dosimetry

Shahrzad Vahedi, Go Okada, Cyril Koughia, Ramaswami Sammynaiken, Andy Edgar, and Safa Kasap
Opt. Mater. Express 4(6) 1244-1256 (2014)

Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

Natural healing behavior of gamma radiation induced defects in multicomponent phosphate glasses used for high energy UV lasers

Quanlong He, Yaoke Xue, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(9) 3284-3293 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
    [Crossref]
  2. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  3. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  4. G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
    [Crossref]
  5. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  6. C. V. Poulsen, P. Varming, J. E. Pedersen, M. Beukema, and S. L. Lauridsen, “Applications of single frequency fiber lasers,” Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 617 (2003).
  7. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  8. F. Mady, M. Benabdesselam, and W. Blanc, “Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett. 35(21), 3541–3543 (2010).
    [Crossref] [PubMed]
  9. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [Crossref] [PubMed]
  10. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
    [Crossref] [PubMed]
  11. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [Crossref] [PubMed]
  12. J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
    [Crossref]
  13. S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19(15), 14473–14478 (2011).
    [Crossref] [PubMed]
  14. H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
    [Crossref]
  15. T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
    [Crossref] [PubMed]
  16. A. L. Tomashuk, M. V. Grekov, S. A. Vasiliev, and V. V. Svetukhin, “Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range,” Opt. Express 22(14), 16778–16783 (2014).
    [Crossref] [PubMed]
  17. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
    [Crossref]
  18. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Deep UV-induced near-infrared photodarkening of Er/Yb-doped and undoped phosphate fibers,” Opt. Lett. 38(20), 4193–4196 (2013).
    [Crossref] [PubMed]
  19. D. Möncke and D. Ehrt, “Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions,” J. Non-Cryst. Solids 352(23–25), 2631–2636 (2006).
    [Crossref]
  20. D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
    [Crossref]
  21. N. J. Kreidl and J. R. Hensler, “Formation of Color Centers in Glasses Exposed to Gamma Radiation,” J. Am. Ceram. Soc. 38(12), 423–432 (1955).
    [Crossref]
  22. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1–2), 1–28 (2000).
    [Crossref]
  23. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
    [Crossref]
  24. B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
    [Crossref]
  25. P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
    [Crossref]
  26. G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
    [Crossref]
  27. S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
    [Crossref]
  28. R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
    [Crossref]
  29. R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
    [Crossref]
  30. A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
    [Crossref]

2014 (3)

2013 (2)

2012 (1)

2011 (3)

2010 (4)

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

F. Mady, M. Benabdesselam, and W. Blanc, “Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett. 35(21), 3541–3543 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

2007 (1)

2006 (2)

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

D. Möncke and D. Ehrt, “Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions,” J. Non-Cryst. Solids 352(23–25), 2631–2636 (2006).
[Crossref]

2005 (1)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

2004 (1)

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

2003 (1)

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

2002 (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

2000 (1)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1–2), 1–28 (2000).
[Crossref]

1998 (1)

G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
[Crossref]

1995 (1)

A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
[Crossref]

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

1982 (1)

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

1955 (1)

N. J. Kreidl and J. R. Hensler, “Formation of Color Centers in Glasses Exposed to Gamma Radiation,” J. Am. Ceram. Soc. 38(12), 423–432 (1955).
[Crossref]

Albert, J.

Aleksandrov, A.

A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
[Crossref]

Aleksandrov, A. I.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Basu, C.

Belev, G.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Benabdesselam, M.

Blanc, W.

Bonfrate, G.

G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
[Crossref]

Borisov, Yu. A.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Boukenter, A.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Boyland, A. J.

Brow, R. K.

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1–2), 1–28 (2000).
[Crossref]

Bubnov, N. N.

A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
[Crossref]

Byer, R. L.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

Cannas, M.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Chapman, D.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Chen, D.

Chen, Z. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Dejneka, A.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Deschamps, T.

Digonnet, M. J. F.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

Dobryakov, S. N.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Edgar, A.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
[Crossref]

Ehrt, D.

D. Möncke and D. Ehrt, “Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions,” J. Non-Cryst. Solids 352(23–25), 2631–2636 (2006).
[Crossref]

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Feng, Z. M.

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Gapontsev, V. P.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Gebavi, H.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Girard, M.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Gonnet, C.

Gracheva, I. N.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Grekov, M. V.

Griscom, D. L.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Gubaev, A. I.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Hensler, J. R.

N. J. Kreidl and J. R. Hensler, “Formation of Color Centers in Glasses Exposed to Gamma Radiation,” J. Am. Ceram. Soc. 38(12), 423–432 (1955).
[Crossref]

Hoffman, H. J.

Hofmann, P.

Isineev, A. A.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Jastrabik, L.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Jetschke, S.

Jiang, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Jiang, Z. H.

Jones, D. E.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Kasap, S.

Kasap, S. O.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Kirchhof, J.

Koponen, J. J.

Koughia, C.

S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
[Crossref]

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Kravchenko, V. B.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Kreidl, N. J.

N. J. Kreidl and J. R. Hensler, “Formation of Color Centers in Glasses Exposed to Gamma Radiation,” J. Am. Ceram. Soc. 38(12), 423–432 (1955).
[Crossref]

Lee, Y. W.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

Leich, M.

Liu, T.

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Luo, W. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Mady, F.

Matitsin, S. M.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Messina, F.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Möncke, D.

D. Möncke and D. Ehrt, “Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions,” J. Non-Cryst. Solids 352(23–25), 2631–2636 (2006).
[Crossref]

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

Monteville, A.

Morrell, B.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Negrisolo, F.

G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
[Crossref]

Nilsson, J.

Okada, G.

S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
[Crossref]

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Ollier, N.

Origlio, G.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Ouerdane, Y.

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Payne, D.

Peng, M.

Peyghambarian, N.

Prokf’ev, A. I.

A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
[Crossref]

Prokof’ev, A. I.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Qian, Q.

Qiu, J.

Rakhimov, R. R.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Robin, T.

Rodionov, A. A.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Röpke, U.

Sahu, J. K.

Salakhov, M. Kh.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Sammynaiken, R.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
[Crossref]

Schülzgen, A.

Schwuchow, A.

Shen, S.

Sinha, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

Söderlund, M. J.

Sones, C.

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Svetukhin, V. V.

Syrnikov, P. P.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Taccheo, S.

Tammela, S. K. T.

Tomashuk, A. L.

Tregoat, D.

Trepakov, V. A.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Turney, V. J.

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

Unger, S.

Vahedi, S.

S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, “ESR study of samarium doped fluorophosphates glasses for high-dose, high-resolution dosimetry,” Opt. Mater. Express 4(6), 1244–1256 (2014).
[Crossref]

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Vaninetti, F.

G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
[Crossref]

Varoy, C.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Vasiliev, S. A.

Vezin, H.

Wang, T. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Wei, X.

Wen, J. X.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Wysokinski, T.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Xiao, Z. Y.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Xiong, L.

Xu, S.

Xu, S. H.

Yang, Z.

Yang, Z. M.

Yoo, S.

Yusupov, R. V.

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Zeng, X. L.

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Appl. Magn. Reson. (1)

A. Aleksandrov, N. N. Bubnov, and A. I. Prokf’ev, “Stabilization of elements in unusual oxidation states and temperature-reversible dynamics of electron pairs in oxide glasses,” Appl. Magn. Reson. 9(2), 251–266 (1995).
[Crossref]

Electron. Lett. (1)

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (2)

G. Bonfrate, F. Vaninetti, and F. Negrisolo, “Single-frequency MOPA Er3+ DBR fiber Laser for WDM digital telecommunication systems,” IEEE Photonics Technol. Lett. 10(8), 1109–1111 (1998).
[Crossref]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth Fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

N. J. Kreidl and J. R. Hensler, “Formation of Color Centers in Glasses Exposed to Gamma Radiation,” J. Am. Ceram. Soc. 38(12), 423–432 (1955).
[Crossref]

J. Appl. Phys. (4)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Origlio, F. Messina, M. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

J. X. Wen, W. Y. Luo, Z. Y. Xiao, T. Y. Wang, Z. Y. Chen, and X. L. Zeng, “Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation,” J. Appl. Phys. 107(4), 044904 (2010).
[Crossref]

J. Chem. Phys. (1)

R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Yu. A. Borisov, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium–niobium phosphate glasses,” J. Chem. Phys. 118(13), 6017–6021 (2003).
[Crossref]

J. Non-Cryst. Solids (3)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1–2), 1–28 (2000).
[Crossref]

D. Möncke and D. Ehrt, “Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions,” J. Non-Cryst. Solids 352(23–25), 2631–2636 (2006).
[Crossref]

D. Möncke and D. Ehrt, “Photoionization of As, Sb, Sn, and Pb in metaphosphate glasses,” J. Non-Cryst. Solids 345–346(1–2), 319–322 (2004).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

R. V. Yusupov, I. N. Gracheva, A. A. Rodionov, P. P. Syrnikov, A. I. Gubaev, A. Dejneka, L. Jastrabik, V. A. Trepakov, and M. Kh. Salakhov, “Experimental manifestations of the Nb4+-O− polaronic excitons in KTa0.988Nb0.012O3,” Phys. Rev. B 84(17), 174118 (2011).
[Crossref]

Other (1)

C. V. Poulsen, P. Varming, J. E. Pedersen, M. Beukema, and S. L. Lauridsen, “Applications of single frequency fiber lasers,” Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 617 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 UV absorption spectra of the phosphate glasses before gamma irradiation: (a) host and Nb2O5 doped glasses; (b) host and Sb2O3 doped glasses.
Fig. 2
Fig. 2 UV–visible absorption spectra of host glass before and after gamma irradiation of 5 kGy, 10 kGy and 20 kGy.
Fig. 3
Fig. 3 UV–visible absorption spectra of (a) 0.5, 1, 1.5 and 2% Nb2O5; (b) 0.25, 0.5, 0.75 and 1% Sb2O3 doped glasses after 20 kGy gamma irradiation.
Fig. 4
Fig. 4 EPR spectra of the samples after 20 kGy gamma irradiation: (a) host glass. (b) 1% Nb2O5. (c) 0.25% Sb2O3. (d) 1% Sb2O3.
Fig. 5
Fig. 5 Decomposition with Gaussian absorption bands of the RIA of host glass after 20 kGy gamma irradiation. Dashed lines represent the Gaussian components.

Tables (1)

Tables Icon

Table 1 Chemical composition of the studied glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PO+ h + POHC
PO+ e POEC
N b 5+ + e N b 4+
S b 3+ + h + S b 4+

Metrics