Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]
J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]
G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]
S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]
V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]
T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]
V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, and J. H. Kim, “Crystallinity of Li-doped Gd2O3:Eu3+ thin-film phosphors grown on Si (100) substrate,” Appl. Phys. Lett. 7(86), 1921–1923 (2005).
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses of rare earth dioxymonocyanamides (Ln2O2CN2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd),” Chem. Lett. 23(10), 1963–1966 (1994).
[Crossref]
T. Takeda, N. Hatta, and S. Kikkawa, “Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE =La and Gd) phosphor,” Chem. Lett. 35(9), 988–989 (2006).
[Crossref]
X. M. Guo, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, “New strategy to achieve La2O2CN2:Eu3+ novel luminescent one-dimensional nanostructures,” CrystEngComm 16(24), 5409–5417 (2014).
[Crossref]
Z. W. Zhang, L. Liu, S. T. Song, J. P. Zhang, and D. J. Wang, “A novel red-emitting phosphors Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes,” Curr. Appl. Phys. 15(3), 248–252 (2015).
[Crossref]
J. Y. Kuang, Y. L. Liu, and D. S. Yuan, “Preparation and characterization of Y2O2S:Eu3+ phosphor via one-step solvothermal process,” Electrochem. Solid-State Lett. 8(9), H72–H74 (2005).
[Crossref]
X. M. Guo, W. S. Yu, X. T. Dong, J. X. Wang, Q. L. Ma, G. X. Liu, and M. Yang, “A technique to fabricate La2O2CN2:Tb3+ nanofibers and nanoribbons with the same morphologies as the precursors,” Eur. J. Inorg. Chem. 2015(3), 389–396 (2015).
[Crossref]
C. M. Michail, G. P. Fountos, I. G. Valais, N. I. Kalyvas, P. F. Liaparinos, I. S. Kandarakis, and G. S. Panayiotakis, “Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors,” IEEE Trans. Nucl. Sci. 58(5), 2503–2511 (2011).
[Crossref]
V. Sivakumar, A. Lakshmanan, R. S. Kumar, S. Kalpana, R. S. Rani, and M. T. Jose, “Preparation and characterisation of yttrium based luminescence phosphors,” Indian J. Pure Appl. Phys. 50(2), 123–128 (2012).
J. Hölsä, R.-J. Lamminmäki, M. Lastusaari, P. Porcher, and E. Säilynoja, “Crystal field effect in RE -doped lanthanum oxycyanamide, La2O2CN2:RE3+(RE =Pr3+and Eu3+),” J. Alloys Compd. 275–277, 402–406 (1998).
[Crossref]
Q. Y. Shao, H. J. Li, K. W. Wu, Y. Dong, and J. Q. Jiang, “Photoluminescence studies of red-emitting NaEu(WO4)2 as a near-UV or blue convertible phosphor,” J. Lumin. 129(8), 879–883 (2009).
[Crossref]
P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin. 111, 89–104 (2005).
[Crossref]
X. Lu, L. Yang, Q. Ma, J. Tian, and X. Dong, “A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor,” J. Mater. Sci. Mater. Electron. 25(12), 5388–5394 (2014).
[Crossref]
C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+(R=La, Y, Gd) phosphors prepared by sol-gel process,” J. Phys. Chem. Solids 69(8), 1905–1911 (2008).
[Crossref]
Y. Hashimoto, M. Takahashi, S. Kikkawa, and F. Kanamaru, “Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln = Ce, Pr, Nd, Sm, Eu, Gd),” J. Solid State Chem. 125(1), 37–42 (1996).
[Crossref]
Y. Hashimoto, M. Takahshi, S. Kikkawa, and F. Kanamaru, “Synthesis and crystal structure of a new compound, lanthanum dioxymonocyanamide (La2O2CN2),” J. Solid State Chem. 114(2), 592–594 (1995).
[Crossref]
C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, and L. Ozawa, “Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method,” Mater. Chem. Phys. 71(2), 179–189 (2001).
[Crossref]
V. P. Hedaoo, V. B. Bhatkar, and S. K. Omanwar, “PbCaB2O5 doped with Eu3+: A novel red emitting phosphor,” Opt. Mater. 45, 91–96 (2015).
[Crossref]
G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A 28(6), 444–445 (1968).
[Crossref]
S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn10-xVO4; Eu3+/Sm3+ (Ln=Y, Gd),” Solid State Commun. 131(1), 65–69 (2004).
[Crossref]
T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136(4), 205–209 (2005).
[Crossref]
J. Sindlinger, J. Glaser, H. Bettentrup, T. Jüstel, and H.-J. Meyer, “Synthesis of Y2O2(CN2) and luminescence properties of Y2O2(CN2): Eu,” Z. Anorg. Allg. Chem. 633, 1686–1690 (2007).
[Crossref]
G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).