Abstract

Creation of artificial optical response, which is determined by the materials geometry rather than chemical composition, is one of the main challenges of modern physics. In this paper application of large-area chiral excimer laser patterning for the creation of artificial chirality is described. Polymethylmethacrylate was doped with chromophore (Fast Red ITR) and this film was irradiated with circularly polarized KrF excimer laser beam. Surface morphology of pristine and treated samples was studied by confocal and AFM microscopy, absorption was studied by FTIR and VCD spectroscopies. It was initially proposed, that surface structure induced by rotationally polarized laser beam will have chiral nature and response. Actual experiments indicate that circularly polarized light induces the formation of many microscopic spirals or more complex structures on the polymer surface. Shape and density of the surface structures were determined by experimental conditions and in all cases the initially non-chiral doped PMMA becomes equivalent to the classical, optically active media. In particular, created structures gave rise to a photoinduced circular dichroism response, with the response being determined by experimental conditions. The resulting chiral structures show long-time stability and offer interesting possibility to manipulate the light polarization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-induced macroscopic chirality in azo-dye-doped polymers

Rouslan Birabassov and Tigran V. Galstian
J. Opt. Soc. Am. B 18(10) 1469-1473 (2001)

Nanoscale chiral surface relief of azo-polymers with nearfield OAM light

Keigo Masuda, Ryo Shinozaki, Yoshinori Kinezuka, Junhyung Lee, Seigo Ohno, Shun Hashiyada, Hiromi Okamoto, Daisuke Sakai, Kenji Harada, Katsuhiko Miyamoto, and Takashige Omatsu
Opt. Express 26(17) 22197-22207 (2018)

Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam

Keigo Masuda, Shogo Nakano, Daisuke Barada, Mitsutaka Kumakura, Katsuhiko Miyamoto, and Takashige Omatsu
Opt. Express 25(11) 12499-12507 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
    [Crossref] [PubMed]
  2. G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
    [Crossref] [PubMed]
  3. O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
    [Crossref]
  4. Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).
  5. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
    [Crossref] [PubMed]
  6. J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
    [Crossref] [PubMed]
  7. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
    [Crossref] [PubMed]
  8. J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
    [Crossref]
  9. K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
    [Crossref]
  10. L. E. Hough and N. A. Clark, “Intrinsic chirality in a bent‐core mesogen induced by extrinsic chiral structures,” Phys. Rev. Lett. 95, 107802 (2005).
    [Crossref] [PubMed]
  11. D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
    [Crossref] [PubMed]
  12. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  13. J. T. Davis and G. P. Spada, “Supramolecular architectures generated by self-assembly of guanosine derivatives,” Chem. Soc. Rev. 36(2), 296–313 (2007).
    [Crossref] [PubMed]
  14. T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
    [Crossref]
  15. A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
    [Crossref] [PubMed]
  16. L. Pérez-García and D. B. Amabilino, “Spontaneous resolution under supramolecular control,” Chem. Soc. Rev. 31(6), 342–356 (2002).
    [PubMed]
  17. H. J. Koshima, “Generation of chirality in two-component molecular crystals from achiral molecules,” Molec. Struct. 552(1-3), 111–116 (2000).
    [Crossref]
  18. I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
    [Crossref]
  19. L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
    [Crossref]
  20. R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
    [Crossref]
  21. A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
    [Crossref] [PubMed]
  22. G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
    [Crossref]
  23. G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
    [Crossref]
  24. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
    [Crossref] [PubMed]
  25. S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
    [Crossref] [PubMed]
  26. L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
    [Crossref]
  27. A. Nahal and R. Talebi, “Ellipticity-dependent laser-induced optical gyrotropy in AgCl thin films doped by silver nanoparticles,” J. Nanopart. Res. 16(6), 2442 (2014).
    [Crossref]
  28. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  29. Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
    [Crossref] [PubMed]
  30. J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
    [Crossref]
  31. Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
    [Crossref] [PubMed]
  32. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
    [Crossref] [PubMed]

2015 (1)

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

2014 (4)

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

A. Nahal and R. Talebi, “Ellipticity-dependent laser-induced optical gyrotropy in AgCl thin films doped by silver nanoparticles,” J. Nanopart. Res. 16(6), 2442 (2014).
[Crossref]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

2013 (3)

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
[Crossref] [PubMed]

2012 (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

2011 (1)

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
[Crossref]

2008 (2)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

2007 (4)

J. T. Davis and G. P. Spada, “Supramolecular architectures generated by self-assembly of guanosine derivatives,” Chem. Soc. Rev. 36(2), 296–313 (2007).
[Crossref] [PubMed]

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

2006 (2)

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2005 (2)

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

L. E. Hough and N. A. Clark, “Intrinsic chirality in a bent‐core mesogen induced by extrinsic chiral structures,” Phys. Rev. Lett. 95, 107802 (2005).
[Crossref] [PubMed]

2003 (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

2002 (2)

L. Pérez-García and D. B. Amabilino, “Spontaneous resolution under supramolecular control,” Chem. Soc. Rev. 31(6), 342–356 (2002).
[PubMed]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

2001 (1)

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

2000 (5)

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

H. J. Koshima, “Generation of chirality in two-component molecular crystals from achiral molecules,” Molec. Struct. 552(1-3), 111–116 (2000).
[Crossref]

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

1997 (1)

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Alcalá, R.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Amabilino, D. B.

L. Pérez-García and D. B. Amabilino, “Spontaneous resolution under supramolecular control,” Chem. Soc. Rev. 31(6), 342–356 (2002).
[PubMed]

Ambrosio, A.

A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Bartal, G.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Bulu, I.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Choi, S. W.

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

Cipparrone, G.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

Clark, N. A.

L. E. Hough and N. A. Clark, “Intrinsic chirality in a bent‐core mesogen induced by extrinsic chiral structures,” Phys. Rev. Lett. 95, 107802 (2005).
[Crossref] [PubMed]

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Clupek, M.

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

Davis, J. T.

J. T. Davis and G. P. Spada, “Supramolecular architectures generated by self-assembly of guanosine derivatives,” Chem. Soc. Rev. 36(2), 296–313 (2007).
[Crossref] [PubMed]

Delaire, J. A.

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

Dragostinova, V.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Elashnikov, R.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feringa, B. L.

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

Goncharova, I.

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
[Crossref]

Ha, N. Y.

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

Hager, M. D.

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

Hough, L. E.

L. E. Hough and N. A. Clark, “Intrinsic chirality in a bent‐core mesogen induced by extrinsic chiral structures,” Phys. Rev. Lett. 95, 107802 (2005).
[Crossref] [PubMed]

Huttel, I.

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Hvilsted, S.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

Iftime, G.

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

Irie, M.

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

Kalachyova, Y.

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

Kasalkova, N.

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Kawauchi, S.

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

Koçer, A.

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

Korblova, E.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Koshima, H. J.

H. J. Koshima, “Generation of chirality in two-component molecular crystals from achiral molecules,” Molec. Struct. 552(1-3), 111–116 (2000).
[Crossref]

Kostejn, M.

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

Labarthet, F. L.

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

Leung, K. C.-F.

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Link, D. R.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Liong, M.

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Liu, Y.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Lyutakov, O.

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Maclennan, J. E.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Maddalena, P.

A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Manners, I.

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

Marrucci, L.

A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Meijberg, W.

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

Millaruelo, M.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Nahal, A.

A. Nahal and R. Talebi, “Ellipticity-dependent laser-induced optical gyrotropy in AgCl thin films doped by silver nanoparticles,” J. Nanopart. Res. 16(6), 2442 (2014).
[Crossref]

Nakatani, K.

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

Natale, G.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

Nedelchev, L.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Nguyen, T. D.

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Nikolova, L.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Oriol, L.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Ozbay, E.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Pagliusi, P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

Pérez-García, L.

L. Pérez-García and D. B. Amabilino, “Spontaneous resolution under supramolecular control,” Chem. Soc. Rev. 31(6), 342–356 (2002).
[PubMed]

Petrova, T.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Provenzano, C.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

Rodríguez, F. J.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Schubert, U. S.

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

Serrano, J. L.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Shao, R.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Shibaev, V. P.

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

Siegel, J.

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Slepicka, P.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Spada, G. P.

J. T. Davis and G. P. Spada, “Supramolecular architectures generated by self-assembly of guanosine derivatives,” Chem. Soc. Rev. 36(2), 296–313 (2007).
[Crossref] [PubMed]

Stoddart, J. F.

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Svorcik, V.

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

Sykora, D.

I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takezoe, H.

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Talebi, R.

A. Nahal and R. Talebi, “Ellipticity-dependent laser-induced optical gyrotropy in AgCl thin films doped by silver nanoparticles,” J. Nanopart. Res. 16(6), 2442 (2014).
[Crossref]

Tejedor, R. M.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Todorov, T.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tomova, N.

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tuma, J.

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

Urbanova, M.

I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
[Crossref]

Villacampa, B.

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

Walba, D. M.

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Walko, M.

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

Whittell, G. R.

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

Zentgraf, T.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Zhang, X.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zink, J. I.

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Adv. Funct. Mater. (1)

T. D. Nguyen, K. C.-F. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, “Versatile supramolecular nanovalves reconfigured for light activation,” Adv. Funct. Mater. 17(13), 2101–2110 (2007).
[Crossref]

Annu. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54(1), 331–366 (2003).
[Crossref] [PubMed]

Appl. Phys. (Berl.) (1)

J. Tuma, O. Lyutakov, I. Huttel, P. Slepicka, and V. Svorcik, “Combination of temperature and saturated vapor annealing for phase separation of block copolymer,” Appl. Phys. (Berl.) 114, 093104 (2013).
[Crossref]

Appl. Phys. Lett. (2)

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, and V. Dragostinova, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Appl. Phys. Lett. 77, 657–659 (2000).
[Crossref]

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90(25), 254102 (2007).
[Crossref]

Chem. Rev. (3)

J. A. Delaire and K. Nakatani, “Linear and nonlinear optical properties of photochromic molecules and materials,” Chem. Rev. 100(5), 1817–1846 (2000).
[Crossref] [PubMed]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102(11), 4139–4176 (2002).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

L. Pérez-García and D. B. Amabilino, “Spontaneous resolution under supramolecular control,” Chem. Soc. Rev. 31(6), 342–356 (2002).
[PubMed]

J. T. Davis and G. P. Spada, “Supramolecular architectures generated by self-assembly of guanosine derivatives,” Chem. Soc. Rev. 36(2), 296–313 (2007).
[Crossref] [PubMed]

Electron. Mater. Lett. (1)

Y. Kalachyova, O. Lyutakov, M. Kostejn, M. Clupek, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Electron. Mater. Lett. 11, 295–301 (2015).

J. Am. Chem. Soc. (1)

G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122(51), 12646–12650 (2000).
[Crossref]

J. Mater. Chem. (1)

R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcalá, F. J. Rodríguez, and B. Villacampa, “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674–1680 (2006).
[Crossref]

J. Mater. Sci. - Mater. El. (1)

O. Lyutakov, V. Svorcik, I. Huttel, J. Siegel, N. Kasalkova, and P. Slepicka, “Polymer surface patterning by laser scanning,” J. Mater. Sci. - Mater. El. 19, 1064–1068 (2008).
[Crossref]

J. Nanopart. Res. (1)

A. Nahal and R. Talebi, “Ellipticity-dependent laser-induced optical gyrotropy in AgCl thin films doped by silver nanoparticles,” J. Nanopart. Res. 16(6), 2442 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

L. Nedelchev, L. Nikolova, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, and S. Hvilsted, “Light propagation through photoinduced chiral structures in azobenzene-containing polymers,” J. Opt. A, Pure Appl. Opt. 3(4), 304–310 (2001).
[Crossref]

Macromolecules (1)

G. Cipparrone, P. Pagliusi, C. Provenzano, and V. P. Shibaev, “Reversible Photoinduced Chiral structure in amorphous polymer for light polarization control,” Macromolecules 41(16), 5992–5996 (2008).
[Crossref]

Mater. Chem. Phys. (1)

J. Tuma, O. Lyutakov, I. Goncharova, and V. Svorcik, “Ag-PMMA structures for application in infra-red optical range,” Mater. Chem. Phys. 148(1-2), 343–348 (2014).
[Crossref]

Molec. Struct. (1)

H. J. Koshima, “Generation of chirality in two-component molecular crystals from achiral molecules,” Molec. Struct. 552(1-3), 111–116 (2000).
[Crossref]

Nano Lett. (1)

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref] [PubMed]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Silver nanostructures: From individual dots to coupled strips for the tailoring of SERS excitation wavelength from near-UV to near-IR,” Nanoscale Res. Lett. 9, 591 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989–991 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, “Functional soft materials from metallopolymers and metallosupramolecular polymers,” Nat. Mater. 10(3), 176–188 (2011).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

S. W. Choi, S. Kawauchi, N. Y. Ha, and H. Takezoe, “Photoinduced chirality in azobenzene-containing polymer systems,” Phys. Chem. Chem. Phys. 9(28), 3671–3681 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

A. Ambrosio, P. Maddalena, and L. Marrucci, “Molecular model for light-driven spiral mass transport in azopolymer films,” Phys. Rev. Lett. 110(14), 146102 (2013).
[Crossref] [PubMed]

L. E. Hough and N. A. Clark, “Intrinsic chirality in a bent‐core mesogen induced by extrinsic chiral structures,” Phys. Rev. Lett. 95, 107802 (2005).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Science (2)

A. Koçer, M. Walko, W. Meijberg, and B. L. Feringa, “A light-actuated nanovalve derived from a channel protein,” Science 309(5735), 755–758 (2005).
[Crossref] [PubMed]

D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, “Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules,” Science 278(5345), 1924–1927 (1997).
[Crossref] [PubMed]

Tetrahedron Asymmetry (1)

I. Goncharova, D. Sykora, and M. Urbanova, “Association of biotin with silver (I) in solution: a circular dichroism study,” Tetrahedron Asymmetry 21(15), 1916–1920 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic representation of experimental set-up and results to be expected: (i) and (ii) samples prepared by different experimental conditions (see the text). (i) and (ii) are the typical pictures of chiral structures.
Fig. 2
Fig. 2 Confocal images of surface structures on the doped polymer samples created at fluence 12 mJ cm−2 by 150 pulses (a) and 450 pulses (b).
Fig. 3
Fig. 3 AFM images of surface morphology and phase scans of doped PMMA treated by circularly polarized excimer laser (fluence 12 mJ cm−2, 450 pulses) taken in two scales - 12 (a) and 3 µm (b).
Fig. 4
Fig. 4 Absorption spectra of pristine sample and PMMA doped and irradiated by KrF laser (fluence 12 mJ cm−2, 150 and 450 pulses): (a) - “normal” absorption spectra, (b) - difference between absorbance of left-handed and right-handed light transmitted through the samples.

Metrics