Abstract

In this paper, a light absorbing model based on the hierarchic structure with randomly distributed nanospheres is proposed for strong absorption over 400-900 nm. The effect of different parameters including the size range, the particle number and the hierarchic height of the nanospheres on the light absorption is systematically analyzed. It is found that this structure can absorb light efficiently with an average absorptivity of 91% at the 400-900 nm waveband. The great enhancement of light absorption can be attributed to the localized surface plasmon resonant of the random metallic nanospheres as well as the strong light scattering of the metallic nanospheres embedded in the dielectric film.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media

R. K. Harrison and Adela Ben-Yakar
J. Opt. Soc. Am. A 32(8) 1523-1535 (2015)

Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber

Peng Feng, Wen-Di Li, and Weihua Zhang
Opt. Express 23(3) 2328-2338 (2015)

Solar thermal absorber based on dielectric filled two-dimensional nickel grating

Qiuqun Liang, Huigao Duan, Xupeng Zhu, Xuandong Chen, and XiongPing Xia
Opt. Mater. Express 9(8) 3193-3203 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  2. R. L. Chern, Y. T. Chen, and H. Y. Lin, “Anomalous optical absorption in metallic gratings with subwavelength slits,” Opt. Express 18(19), 19510–19521 (2010).
    [Crossref] [PubMed]
  3. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  4. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
    [Crossref]
  5. S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
    [Crossref]
  6. S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
    [Crossref]
  7. J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
    [Crossref]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  10. A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
    [Crossref]
  11. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
    [Crossref] [PubMed]
  12. A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
    [Crossref]
  13. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref] [PubMed]
  14. A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
    [Crossref]
  15. W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
    [Crossref] [PubMed]
  16. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
    [Crossref] [PubMed]
  17. C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
    [Crossref] [PubMed]
  18. M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
    [Crossref]
  19. D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
    [Crossref]
  20. Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
    [Crossref] [PubMed]
  21. L. Yang, X. Li, X. Tuo, T. T. V. Nguyen, X. Luo, and M. Hong, “Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces,” Opt. Express 22, A577–A588 (2014).
    [PubMed]
  22. H. Wang and Z. Guo, “Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells,” Mater. Res. Bull. 70, 928–934 (2015).
    [Crossref]
  23. I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
    [Crossref]
  24. Lumerical lnc., “BSDF” http://docs.lumerical.com/en/index.html?particle_scattering_bsdf.html
  25. M. Langlais, J. P. Hugonin, M. Besbes, and P. B. Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 19, A657–A663 (2011).
    [PubMed]
  26. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
    [Crossref] [PubMed]
  27. P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
    [Crossref]
  28. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [Crossref]
  29. Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
    [Crossref]
  30. Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40(9), 1354–1361 (2001).
    [Crossref] [PubMed]
  31. I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18(6), 1275–1278 (2001).
    [Crossref] [PubMed]
  32. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [Crossref] [PubMed]
  33. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
    [Crossref] [PubMed]
  34. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Ch. 2.

2015 (1)

H. Wang and Z. Guo, “Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells,” Mater. Res. Bull. 70, 928–934 (2015).
[Crossref]

2014 (9)

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

L. Yang, X. Li, X. Tuo, T. T. V. Nguyen, X. Luo, and M. Hong, “Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces,” Opt. Express 22, A577–A588 (2014).
[PubMed]

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

2013 (3)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012).
[Crossref] [PubMed]

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

2011 (6)

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

M. Langlais, J. P. Hugonin, M. Besbes, and P. B. Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 19, A657–A663 (2011).
[PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (3)

2008 (1)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

2007 (1)

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

2006 (2)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

2004 (2)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
[Crossref]

2001 (2)

Abdallah, P. B.

Alves, E.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

An, J.

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bao, N.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Barradas, N. P.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Besbes, M.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Buso, D.

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

Calliari, L.

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Cao, S.

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Cao, Y.

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Cavaleiro, A.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Chen, Y. L.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Chen, Y. T.

Chern, R. L.

Chylek, P.

Cunha, L.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Du, P.

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Frank, A. J.

A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
[Crossref]

Fu, Q.

Fu, Y.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Gai, L.

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

Grimes, C. A.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Gu, F.

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Guo, Z.

H. Wang and Z. Guo, “Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells,” Mater. Res. Bull. 70, 928–934 (2015).
[Crossref]

Gupta, A.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Han, X.

Hansen, R. V.

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Ho, G. W.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Hong, M.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

L. Yang, X. Li, X. Tuo, T. T. V. Nguyen, X. Luo, and M. Hong, “Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces,” Opt. Express 22, A577–A588 (2014).
[PubMed]

Hugonin, J. P.

Im, S. H.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Ji, A.

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

Juodkazis, S.

Kabir, R.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Kao, T. S.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Kim, H. J.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

Kim, Y. J.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

Kopidakis, N.

A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
[Crossref]

Korgel, B. A.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Kumari, A.

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

Lagemaat, J.

A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
[Crossref]

Langlais, M.

Lee, C.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

Lee, J. Y.

Lee, W. I.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

Lesina, A. C.

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Li, C.

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

Li, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

L. Yang, X. Li, X. Tuo, T. T. V. Nguyen, X. Luo, and M. Hong, “Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces,” Opt. Express 22, A577–A588 (2014).
[PubMed]

Li, Z. Y.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Liang, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Lin, H. Y.

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, R.-S.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Liu, Y.

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Liu, Z.

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

Lu, Z.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Luo, F.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Luo, X.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

L. Yang, X. Li, X. Tuo, T. T. V. Nguyen, X. Luo, and M. Hong, “Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces,” Opt. Express 22, A577–A588 (2014).
[PubMed]

Martucci, A.

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

McLellan, J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Mor, G. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Mulvaney, P.

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Nguyen, T. T. V.

Nishijima, Y.

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

Pacifico, J.

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

Paris, A.

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Pathak, N. K.

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

Paulose, M.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Peumans, P.

J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Qiao, Y.

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Rosa, L.

Serra, E.

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Shankar, K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Shao, W.

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

Sharma, R. P.

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

Shen, H.

Shen, L.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Siekkinen, A.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Sudiarta, I. W.

Sun, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Sun, W.

Sun, Z.

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

Teng, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Torrell, M.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Tsai, D. P.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Tuo, X.

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Vaccari, A.

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Varghese, O. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Vasilevskiy, M. I.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Vaz, F.

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

Wang, C.

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Wang, H.

H. Wang and Z. Guo, “Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells,” Mater. Res. Bull. 70, 928–934 (2015).
[Crossref]

Wang, T.

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Wang, Y.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Wiley, B. J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Xia, Y.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Xu, W.

Xu, Z.

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Yang, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Yang, L.

Yu, I. G.

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

Yu, W.

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Zha, C.

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Zhan, Z.

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Zhang, H.

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Zhang, X.

S. Cao, W. Yu, T. Wang, H. Shen, X. Han, W. Xu, and X. Zhang, “Meta-microwindmill structure with multiple absorption peaks for the detection of ketamine and amphetamine type stimulants in terahertz domain,” Opt. Mater. Express 4(9), 1876–1884 (2014).
[Crossref]

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Zheng, L.

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (2)

C. Zha, L. Shen, X. Zhang, Y. Wang, B. A. Korgel, A. Gupta, and N. Bao, “Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces 6(1), 122–129 (2014).
[Crossref] [PubMed]

Z. Zhan, J. An, H. Zhang, R. V. Hansen, and L. Zheng, “Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting,” ACS Appl. Mater. Interfaces 6(2), 1139–1144 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

D. Buso, J. Pacifico, A. Martucci, and P. Mulvaney, “Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization,” Adv. Funct. Mater. 17(3), 347–354 (2007).
[Crossref]

Adv. Opt. Mater. (1)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Cao, P. Du, Y. Qiao, Z. Liu, and Z. Sun, “Light absorption enhancement of 100nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles,” Appl. Phys. Lett. 105(15), 153902 (2014).
[Crossref]

S. Cao, W. Yu, T. Wang, Z. Xu, C. Wang, Y. Fu, and Y. Liu, “Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption,” Appl. Phys. Lett. 102(16), 161109 (2013).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Chem. Commun. (Camb.) (1)

W. Shao, F. Gu, L. Gai, and C. Li, “Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye-sensitized solar cells,” Chem. Commun. (Camb.) 47(17), 5046–5048 (2011).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

A. J. Frank, N. Kopidakis, and J. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coord. Chem. Rev. 248, 1165–1179 (2004).
[Crossref]

J. Appl. Phys. (2)

M. Torrell, R. Kabir, L. Cunha, M. I. Vasilevskiy, F. Vaz, A. Cavaleiro, E. Alves, and N. P. Barradas, “Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing,” J. Appl. Phys. 109(7), 074310 (2011).
[Crossref]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

J. Mater. Chem. (1)

I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. 21(2), 532–538 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Light Sci. Appl. (2)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light Sci. Appl. 3(7), e185 (2014).
[Crossref]

Mater. Res. Bull. (1)

H. Wang and Z. Guo, “Hierarchical TiO2 submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells,” Mater. Res. Bull. 70, 928–934 (2015).
[Crossref]

Nano Lett. (1)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (1)

Plasmonics (2)

A. Ji, R. P. Sharma, A. Kumari, and N. K. Pathak, “Numerical simulation of solar cell plasmonics for small and large metal nano clusters using discrete dipole approximation,” Plasmonics 9(2), 291–297 (2014).
[Crossref]

A. Paris, A. Vaccari, A. C. Lesina, E. Serra, and L. Calliari, “Plasmonic scattering by metal nanoparticles for solar cell,” Plasmonics 7(3), 525–534 (2012).
[Crossref]

Rep. Prog. Phys. (2)

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys. 74(10), 106401 (2011).
[Crossref]

Sci. Rep. (1)

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Other (2)

Lumerical lnc., “BSDF” http://docs.lumerical.com/en/index.html?particle_scattering_bsdf.html

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Ch. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of the proposed three models of solar energy absorbers: (a) perspective view and (d) cross-sectional view in the xz plane (y = 0) of Structure 1, (b) perspective view and (e) cross-sectional view in the xz plane (y = 0) of Structure 2, and (c) perspective view of Structure 3.
Fig. 2
Fig. 2 Absorption spectra of three absorbers: S1 (red), S2 (blue), and S3 (black) over the waveband of 400-900 nm for the normal incident light. The yellow zone has > 80% absorption.
Fig. 3
Fig. 3 Distribution of the electric field intensity of Structure 1 in the xy plane (z = + 0.17 μm) at four featured wavelengths. (a) 474 nm, (b) 522 nm, (c) 647 nm, and (d) 804 nm. This plane is the central plane of the top layer (i.e., the random Au nanoparticle layer, Layer E).
Fig. 4
Fig. 4 Distribution of the electric field intensity of Structure 1 in the xy plane (z = + 0.12 μm) at four featured wavelengths. (a) 474 nm, (b) 522 nm, (c) 647 nm, and (d) 804 nm. This plane is the central plane of the random TiO2 nanoparticle layer (i.e., Layer D).
Fig. 5
Fig. 5 Distribution of the electric field intensity of Structure 1 in the xy plane (z = −0.1 μm) at four featured wavelengths. (a) 474 nm, (b) 522 nm, (c) 647 nm, and (d) 804 nm. This plane is the central plane of the Au random sphere layer (i.e., Layer B).
Fig. 6
Fig. 6 Influences of the radius and the number of NSs on the absorption spectra for different layers: (a) and (d) for the top Au NSs layer (i.e., Layer E), (b) and (e) for the TiO2 NSs layer (i.e., Layer D), (c) and (f) for the bottom Au NSs layer (i.e., Layer B), respectively.

Metrics