Abstract

The limited solubility of rare-earths in silica hampers the development of loss-compensated photonic integrated circuits. We report a novel method using femtosecond laser plasma assisted hybrid material integration of rare-earth-doped tellurite with silica, achieving high doping concentration of Er3+ and Yb3+-ions, 1.63 × 1021 atoms.cm−3,without segregation validated by Er3+:4I13/2 lifetime of 9.1 ms. The sequential ablation of two individual rare-earth (Er3+/Yb3+) doped-tellurite glass targets produces an exceptional intermixing of Er3+ and Yb3+-ions extending to the pristine silica with sharp interface. Formation of such homogeneous glass structure with Er3+-Yb3+-ions in a matrix of silica is not possible to realise by conventional methods.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped glass nanoparticle embedded polymer thin films using femtosecond pulsed laser deposition

Eric Kumi Barimah, Marcin W. Ziarko, Nikolaos Bamiedakis, Ian H. White, Richard V. Penty, and Gin Jose
Opt. Mater. Express 8(7) 1997-2007 (2018)

Ultrafast laser plasma doping of Er3+ ions in silica-on-silicon for optical waveguiding applications

Suraya Ahmad Kamil, Jayakrishnan Chandrappan, Matthew Murray, Paul Steenson, Thomas F. Krauss, and Gin Jose
Opt. Lett. 41(20) 4684-4687 (2016)

Rare-earth-doped silica microchip laser fabricated by sintering nanoporous glass

Jinan Xia, Danping Chen, Jianrong Qiu, and Congshan Zhu
Opt. Lett. 30(1) 47-49 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
    [Crossref]
  2. A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
    [Crossref]
  3. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
    [Crossref]
  4. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref] [PubMed]
  5. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  6. G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53(7), 071819 (2014).
    [Crossref]
  7. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  8. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. (Amst) 16(1-2), 93–103 (2001).
    [Crossref]
  9. L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
    [Crossref]
  10. A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
    [Crossref]
  11. G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth – doped glasses,” Riv. DEL NUOVO Cim. 28, 1–53 (2006).
  12. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
    [Crossref]
  13. G. Jose, T. T. Fernandez, D. Steenson, and A. Jha, “Multi-ion diffusion in silica glass using femtosecond pulsed laser deposition,” Conf. Lasers Electro-Optics 2012 CM3L.6 (2012).
    [Crossref]
  14. J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
    [Crossref] [PubMed]
  15. A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
    [Crossref]
  16. Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
    [Crossref]
  17. Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
    [Crossref]
  18. F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).
  19. E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).
  20. E. Kótai, “Computer methods for analysis and simulation of RBS and ERDA spectra,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater, Atoms 85, 588–596 (1994).
  21. A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).
  22. S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
    [Crossref]
  23. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
    [Crossref]
  24. R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
    [Crossref] [PubMed]
  25. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
    [Crossref]
  26. A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
    [Crossref]
  27. C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
    [Crossref] [PubMed]

2015 (3)

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

2014 (5)

A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53(7), 071819 (2014).
[Crossref]

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

2013 (3)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

2012 (3)

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
[Crossref]

2011 (2)

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

2006 (1)

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth – doped glasses,” Riv. DEL NUOVO Cim. 28, 1–53 (2006).

2002 (2)

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

2001 (1)

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. (Amst) 16(1-2), 93–103 (2001).
[Crossref]

1998 (1)

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

1997 (1)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[Crossref]

1996 (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
[Crossref]

1995 (1)

E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).

1994 (1)

E. Kótai, “Computer methods for analysis and simulation of RBS and ERDA spectra,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater, Atoms 85, 588–596 (1994).

1990 (1)

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Agocs, E.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Amarnath Reddy, A.

A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
[Crossref]

Amsel, G.

E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Auzel, F.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. (Amst) 16(1-2), 93–103 (2001).
[Crossref]

Avrutin, V.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Battistig, G.

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Brand, L.

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Cabié, M.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Cadel, E.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Chandrappan, J.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Chapon, P.

A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).

Chiappini, A.

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53(7), 071819 (2014).
[Crossref]

Christiansen, S.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Cotte, S.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Da, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Da Silva, M. F.

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Deák, A.

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

Demchenko, D. O.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Eggeling, C.

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Enany, A. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Ferrari, M.

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth – doped glasses,” Riv. DEL NUOVO Cim. 28, 1–53 (2006).

Fries, J. R.

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

Gamez, G.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Goldner, P.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. (Amst) 16(1-2), 93–103 (2001).
[Crossref]

Granzow, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Günther, R.

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Hajdu, C.

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Hellmann, R.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Hill, C. J.

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Hoffmann, B.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Hofmann, T.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Isshiki, H.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jha, A.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Jing, F.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Jose, G.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Joshi, P.

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Kakkar, T.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Karlsson, L. S.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Kenyon, A.

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
[Crossref]

Kimura, T.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Kótai, E.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

E. Kótai, “Computer methods for analysis and simulation of RBS and ERDA spectra,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater, Atoms 85, 588–596 (1994).

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Legendre, S.

A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).

Liu, Z.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Lousteau, J.

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Lozano-Perez, S.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

Malladi, S.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Manuaba, A.

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Melo, A. A.

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Michler, J.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Mohamad, D. W.

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

Mohamed Kamari, H.

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

Morkoç, H.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Muhammad Noorazlan, A.

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

Murray, M.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Nagy, N.

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

Nakajima, T.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Nichols, P. L.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Ning, C. Z.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Ning, H.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Okur, S.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Özgür, Ü.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Pászti, F.

E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

Petrik, P.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Polman, A.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[Crossref]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Richards, B. D. O.

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Righini, G. C.

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53(7), 071819 (2014).
[Crossref]

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth – doped glasses,” Riv. DEL NUOVO Cim. 28, 1–53 (2006).

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

Russell, P. S. J.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Sato, T.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Schmidt, M. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Schmitt, S. W.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Seidel, C. A.

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Seyeux, A.

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Sivakov, V.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Steenson, D. P.

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Surendra Babu, S.

A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
[Crossref]

Szabó, Z.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Szilágyi, E.

E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).

Tempez, A.

A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

Toney Fernandez, T.

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

Toporkov, M.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Turkdogan, S.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Venzago, C.

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Vijaya Prakash, G.

A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
[Crossref]

Volk, J.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

Wondraczek, L.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Yin, L.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Zolnai, Z.

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

Zulkefly, S. S.

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

Appl. Phys. Lett. (1)

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Appl. Surf. Sci. (1)

Z. Zolnai, M. Toporkov, J. Volk, D. O. Demchenko, S. Okur, Z. Szabó, Ü. Özgür, H. Morkoç, V. Avrutin, and E. Kótai, “Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques,” Appl. Surf. Sci. 327, 43–50 (2015).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Int. Mater. Rev. (1)

A. Jha, B. D. O. Richards, G. Jose, T. Toney Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57(6), 357–382 (2012).
[Crossref]

J. Appl. Phys. (1)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[Crossref]

J. Nanomater. (1)

A. Muhammad Noorazlan, H. Mohamed Kamari, S. S. Zulkefly, and D. W. Mohamad, “Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System,” J. Nanomater. 2013, 1–8 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Nat. Mater. (1)

R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L. S. Karlsson, S. Lozano-Perez, M. Cabié, and A. Seyeux, “Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion,” Nat. Mater. 14(3), 307–311 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms (3)

F. Pászti, A. Manuaba, C. Hajdu, A. A. Melo, and M. F. Da Silva, “Current measurement on MeV energy ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 47, 187–192 (1990).

E. Szilágyi, F. Pászti, and G. Amsel, “Theoretical approximations for depth resolution calculations in IBA methods,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 100, 103–121 (1995).

A. Tempez, S. Legendre, and P. Chapon, “Depth profile analysis by plasma profiling time of flight mass spectrometry,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater., Atoms 332, 351–354 (2014).

Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater, Atoms (1)

E. Kótai, “Computer methods for analysis and simulation of RBS and ERDA spectra,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater, Atoms 85, 588–596 (1994).

Opt. Commun. (1)

A. Amarnath Reddy, S. Surendra Babu, and G. Vijaya Prakash, “Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers,” Opt. Commun. 285(24), 5364–5367 (2012).
[Crossref]

Opt. Eng. (1)

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53(7), 071819 (2014).
[Crossref]

Opt. Mater. (Amst) (2)

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. (Amst) 16(1-2), 93–103 (2001).
[Crossref]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amst) 5(3), 159–167 (1996).
[Crossref]

Photonics Res. (1)

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics [Invited],” Photonics Res. 2(3), A45 (2014).
[Crossref]

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002).
[Crossref]

Phys. Rev. B (1)

Z. Zolnai, N. Nagy, A. Deák, G. Battistig, and E. Kótai, “Three-dimensional view of the shape, size, and atomic composition of ordered nanostructures by Rutherford backscattering spectrometry,” Phys. Rev. B 83(23), 233302 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Eggeling, J. R. Fries, L. Brand, R. Günther, and C. A. Seidel, “Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1556–1561 (1998).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

S. W. Schmitt, C. Venzago, B. Hoffmann, V. Sivakov, T. Hofmann, J. Michler, S. Christiansen, and G. Gamez, “Glow discharge techniques in the chemical analysis of photovoltaic materials,” Prog. Photovolt. Res. Appl. 22(3), 371–382 (2014).
[Crossref]

Prog. Quantum Electron. (1)

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[Crossref]

Riv. DEL NUOVO Cim. (1)

G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth – doped glasses,” Riv. DEL NUOVO Cim. 28, 1–53 (2006).

Sci. Rep. (1)

J. Chandrappan, M. Murray, T. Kakkar, P. Petrik, E. Agocs, Z. Zolnai, D. P. Steenson, A. Jha, and G. Jose, “Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping,” Sci. Rep. 5, 14037 (2015).
[Crossref] [PubMed]

Other (1)

G. Jose, T. T. Fernandez, D. Steenson, and A. Jha, “Multi-ion diffusion in silica glass using femtosecond pulsed laser deposition,” Conf. Lasers Electro-Optics 2012 CM3L.6 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the procedural differences in the fabrication of Er3+-Yb3+-tellurite modified silica layers. (a) Illustrate the sequential ablation and doping of Er3+ and Yb3+ tellurites into silica using a two-step process. (b) Conventional single step process of Er3+ and Yb3+ co-doped target ablation and doping.
Fig. 2
Fig. 2 High-magnification TEM image of the RETS layer formed under identical conditions by (a) Sequential ablation of individual Er3+/Yb3+-doped tellurites, sample S1. (b) Single target ablation of Er3+ and Yb3+ co-doped tellurite, sample S2. (c) High angle annular dark field (HAADF) cross-sectional image of S1 showing the interface of pristine silica and RETS.
Fig. 3
Fig. 3 SAED pattern from the modified RETS layer and pristine silica region from sample S1. The larger diffraction ring radius of the modified layer implies higher density compared to the pristine silica layer.
Fig. 4
Fig. 4 EDX mapping acquired during cross-sectional TEM analysis of a 1.4 µm thick sample prepared by the sequential approach (similar to S1). The distribution of various elements in the RETS layer is indicated. Homogenous mixing of Er and Yb is achieved irrespective of the sequential doping.
Fig. 5
Fig. 5 PP-TOFMS profile of sample S1. Ion beam ratio of the elements in the sample indicating the uniform distribution of Er and Yb
Fig. 6
Fig. 6 RBS spectra of the implanted layer/SiO2 substrate measured at two different sample tilt angles of 7° (open dots) and 45° (solid dots), respectively. The corresponding RBX simulations are also shown (red and blue lines). Surface spectrum edges for Er, Te, Zn, Si, Na and O are indicated. (a) Sample S1, (b) Sample S2.
Fig. 7
Fig. 7 Atomic concentrations vs. depth in the implanted layer as evaluated from 2.82 MeV He+ RBS spectra using a simple two layer model. (a) Sample S1, (b) Sample S2.
Fig. 8
Fig. 8 (a) Typical step index profile of RETS layer characterized at a wavelength of 1550 nm. (b) Measured (black dots) and fitted (solid lines) ellipsometric spectra at an angle of incidence of 70° for sample S2; The inset shows the depth profiles of the refractive index (solid curve) and extinction coefficient (k, dotted line) at the wavelength of 1550 nm for S1 and S2, calculated from the fit. (c) The UV-Vis-NIR transmittance of the substrate and the samples, S1 and S2.
Fig. 9
Fig. 9 Typical density variation of Tellurite target glass with RE concentration.
Fig. 10
Fig. 10 Comparison of the PL emission characteristics of the RETS samples fabricated using single co-doped target and sequential two targets. (a) PL intensity profile shows comparable performance for both S1 and S2. Luminescence spectrum of erbium-doped silica is also shown in comparison to the co-doped samples. (b) Fluorescence lifetime profile measuring lifetime of 12.94 ms for sample S1 compared to 9.16 ms for S2.

Tables (1)

Tables Icon

Table 1 Parameters used in the RBX simulation of the measured RBS spectra. Effective thicknesses of the implanted layers given in nm are recalculated from thicknesses given in atom/cm2 (provided by the RBS analysis) assuming the atomic density of silica, respectively. The estimated uncertainty of the evaluated Er contents is ± 0.05 at. %.

Metrics