Abstract

Chalcogenide glasses are of great interest for a variety of applications, such as nonlinear optics, sensing and astronomy due to their high optical nonlinearity, broad infrared transparency as well as high photosensitivity. We report a detailed comparison of the inscription of single-mode waveguides in gallium lanthanum sulphide chalcogenide glass using 800 nm femtosecond lasers. The athermal and thermal fabrication regimes are explored by using laser repetition rates between 1 kHz and 5.1 MHz. Three different techniques are exploited to create waveguides with circular mode-fields: multiscanning and slit-beam shaping in the athermal regime and cumulative heating in the thermal regime. The fabricated structures are characterized in terms of physical size and shape, refractive index contrast as well as mode-field diameter and propagation loss to provide a roadmap for the inscription of low loss waveguides.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
Opt. Express 26(8) 10930-10943 (2018)

Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide

John E. McCarthy, Henry T. Bookey, Nicholas D. Psaila, Robert R. Thomson, and Ajoy K. Kar
Opt. Express 20(2) 1545-1551 (2012)

Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass

Ben McMillen, Mingshan Li, Sheng Huang, Botao Zhang, and Kevin P. Chen
Opt. Lett. 39(12) 3579-3582 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Lackner, “Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the Process Industries - a Review,” Rev. Chem. Eng. 23, 65–147 (2007).
    [Crossref]
  2. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, vol. 89 of Topics in Applied Physics (Springer, 2003), 1st ed.
    [Crossref]
  3. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
    [Crossref] [PubMed]
  4. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  5. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  6. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
    [Crossref]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref] [PubMed]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  9. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17, 1963–1969 (2009).
    [Crossref] [PubMed]
  10. R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
    [Crossref]
  11. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
    [Crossref]
  12. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
    [Crossref] [PubMed]
  13. T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
    [Crossref]
  14. S. Huang, M. Li, S. M. Garner, M.-J. Li, and K. P. Chen, “Flexible photonic components in glass substrates,” Opt. Express 23, 22532–22543 (2015).
    [Crossref] [PubMed]
  15. B. McMillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, “Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss,” Opt. Lett. 37, 1418–1420 (2012).
    [Crossref] [PubMed]
  16. L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
    [Crossref]
  17. C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian, “Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses,” Opt. Express 22, 13091–13101 (2014).
    [Crossref]
  18. O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
    [Crossref]
  19. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
    [Crossref] [PubMed]
  20. O. Caulier, D. L. Coq, E. Bychkov, and P. Masselin, “Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation,” Opt. Lett. 38, 4212–4215 (2013).
    [Crossref] [PubMed]
  21. J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
    [Crossref]
  22. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
    [Crossref]
  23. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26, 1370–1378 (2009).
    [Crossref]
  24. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20, 1545–1551 (2012).
    [Crossref] [PubMed]
  25. M. Li, S. Huang, Q. Wang, H. Petek, and K. P. Chen, “Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser,” Opt. Lett. 39, 693–696 (2014).
    [Crossref] [PubMed]
  26. S. Minardi, G. Cheng, C. D’Amico, and R. Stoian, “Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass,” Opt. Lett. 40, 257–259 (2015).
    [Crossref] [PubMed]
  27. C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
    [Crossref]
  28. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
    [Crossref]
  29. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
    [Crossref]
  30. M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
    [Crossref] [PubMed]
  31. S. Gross, N. Jovanovic, A. Sharp, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23, 7946–7956 (2015).
    [Crossref] [PubMed]
  32. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
    [Crossref]
  33. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
    [Crossref]
  34. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21, 15452–15463 (2013).
    [Crossref] [PubMed]
  35. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
    [Crossref] [PubMed]
  36. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
    [Crossref]
  37. T. ToneyFernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
    [Crossref]
  38. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
    [Crossref]
  39. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
    [Crossref]
  40. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
    [Crossref] [PubMed]
  41. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
    [Crossref] [PubMed]
  42. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
    [Crossref]
  43. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15, 10842–10854 (2007).
    [Crossref]
  44. A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39, 4820–4822 (2014).
    [Crossref] [PubMed]
  45. A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
    [Crossref] [PubMed]
  46. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012).
    [Crossref] [PubMed]

2015 (4)

2014 (5)

2013 (4)

2012 (4)

2011 (3)

A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (4)

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

2007 (4)

M. Lackner, “Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the Process Industries - a Review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15, 10842–10854 (2007).
[Crossref]

2006 (1)

2005 (3)

2004 (1)

2003 (3)

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[Crossref]

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

2002 (1)

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

2001 (1)

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

1996 (1)

1993 (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
[Crossref]

1977 (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

Allington-Smith, J.

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[Crossref] [PubMed]

Anderson, T.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

Arezki, B.

Arriola, A.

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Baumberg, J. J.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Beecher, S. J.

Benayas, A.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Bookey, H. T.

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Burmeister, F.

Bychkov, E.

Caillaud, C.

Calvez, L.

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Carlie, N.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

Caulier, O.

Cerullo, G.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[Crossref]

Charles, N.

Chen, K. P.

Cheng, G.

Choudhury, D.

Coq, D. L.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Couzi, M.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

D’Amico, C.

Davis, K. M.

De Silvestri, S.

Domingo, C.

Döring, S.

Ebendorff-Heidepriem, H.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Fernandez, P.

Fuerbach, A.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Gai, X.

García, J.

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
[Crossref]

Garner, S. M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Gross, S.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

S. Gross, N. Jovanovic, A. Sharp, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23, 7946–7956 (2015).
[Crossref] [PubMed]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Haro-González, P.

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Herman, P. R.

Hernandez, M.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[Crossref]

Hewak, D. W.

M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26, 1370–1378 (2009).
[Crossref]

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Hibino, Y.

Hirao, K.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Hô, N.

Hoekstra, H.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

Huang, S.

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[Crossref]

Hughes, M. A.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Jaque, D.

Jha, A.

Jose, G.

Jovanovic, N.

Kanehira, S.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

Kar, A. K.

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
[Crossref]

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Kern, P.

Kohtoku, M.

Labadie, L.

Lackner, M.

M. Lackner, “Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the Process Industries - a Review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

Lancaster, D. G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Laporta, P.

Lawrence, J.

LeCoarer, E.

Li, M.

Li, M.-J.

Lopez, C.

Luther-Davies, B.

Macdonald, J. R.

Madden, S.

Mairaj, A. K.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Marangoni, M.

Marcuse, D.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[Crossref] [PubMed]

Martin, G.

Masselin, P.

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
[Crossref]

McCarthy, J. E.

McMillen, B.

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[Crossref]

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Minardi, S.

Miura, K.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Mukherjee, S.

Nasu, Y.

Nazabal, V.

Nejadmalayeri, A. H.

Netti, M. C.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Nolte, S.

Olaizola, S. M.

Osellame, R.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Petek, H.

Petit, L.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

Polli, D.

Pollnau, M.

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

Pruneri, V.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Psaila, N.

Psaila, N. D.

Ramponi, R.

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Requejo-Isidro, J.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[Crossref] [PubMed]

Richardson, K. a.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[Crossref] [PubMed]

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
[Crossref]

Richter, S.

Rivero, C.

Ródenas, A.

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
[Crossref]

Schulte, A.

Sharp, A.

Shen, X.

Siegel, J.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Solis, J.

Sotillo, B.

Spence, D.

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[Crossref]

Stoian, R.

Sugimoto, N.

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Taccheo, S.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

Thomson, R. R.

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
[Crossref]

ToneyFernandez, T.

Troles, J.

Tünnermann, A.

Tuthill, P. G.

Vallée, R.

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Wallner, O.

Wang, Q.

Wang, R.

Wang, T.

Wei, W.

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

Withford, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

S. Gross, N. Jovanovic, A. Sharp, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23, 7946–7956 (2015).
[Crossref] [PubMed]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[Crossref] [PubMed]

Yang, W.

M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26, 1370–1378 (2009).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[Crossref]

Yang, Z.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

Zhang, B.

Zimmermann, F.

Zoubir, A.

Appl. Phys. A (1)

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[Crossref]

Appl. Phys. A Mater. Sci. Process. (1)

C. B. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A Mater. Sci. Process. 76, 351–354 (2003).
[Crossref]

Appl. Phys. Lett. (2)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[Crossref]

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Petit, N. Carlie, T. Anderson, M. Richardson, and K. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14, 1323–1334 (2008).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3, 332–348 (2012).
[Crossref]

J. Appl. Phys. (2)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 1–7 (2007).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[Crossref]

J. Non-Cryst. Solids (2)

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241–246 (2002).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (2)

R. Osellame, H. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5, 442–463 (2011).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Nat. Photonics (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Opt. Express (11)

M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[Crossref] [PubMed]

S. Gross, N. Jovanovic, A. Sharp, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23, 7946–7956 (2015).
[Crossref] [PubMed]

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20, 1545–1551 (2012).
[Crossref] [PubMed]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21, 15452–15463 (2013).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009).
[Crossref] [PubMed]

R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17, 1963–1969 (2009).
[Crossref] [PubMed]

S. Huang, M. Li, S. M. Garner, M.-J. Li, and K. P. Chen, “Flexible photonic components in glass substrates,” Opt. Express 23, 22532–22543 (2015).
[Crossref] [PubMed]

C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian, “Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses,” Opt. Express 22, 13091–13101 (2014).
[Crossref]

A. Ródenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
[Crossref] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15, 10842–10854 (2007).
[Crossref]

Opt. Lett. (12)

A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39, 4820–4822 (2014).
[Crossref] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
[Crossref] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
[Crossref] [PubMed]

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012).
[Crossref] [PubMed]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004).
[Crossref] [PubMed]

O. Caulier, D. L. Coq, E. Bychkov, and P. Masselin, “Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation,” Opt. Lett. 38, 4212–4215 (2013).
[Crossref] [PubMed]

B. McMillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, “Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss,” Opt. Lett. 37, 1418–1420 (2012).
[Crossref] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
[Crossref] [PubMed]

T. ToneyFernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

M. Li, S. Huang, Q. Wang, H. Petek, and K. P. Chen, “Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser,” Opt. Lett. 39, 693–696 (2014).
[Crossref] [PubMed]

S. Minardi, G. Cheng, C. D’Amico, and R. Stoian, “Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass,” Opt. Lett. 40, 257–259 (2015).
[Crossref] [PubMed]

Opt. Mater. (1)

O. M. Efimov, L. B. Glebov, K. a. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Opt. Mater. Express (1)

Pure Appl. Opt. Europ. Opt. Soc. P. A (1)

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. Europ. Opt. Soc. P. A 2, 683–700 (1993).
[Crossref]

Rev. Chem. Eng. (1)

M. Lackner, “Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the Process Industries - a Review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

Other (1)

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, vol. 89 of Topics in Applied Physics (Springer, 2003), 1st ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross-section of waveguides inscribed in the thermal regime at 5.1 MHz repetition rate. Writing parameters: NAeff = 0.66, 9 nJ pulse energy and translation speeds of 500, 250 and 100 mm/min (left to right). The inscription laser was incident from the top.
Fig. 2
Fig. 2 (a) Vertical and (b) horizontal physical sizes of waveguides inscribed with a NAeff = 0.66, pulse energies of 4 to 9 nJ in 1 nJ steps, 9 different translation speeds between 100 and 3000 mm/min at a writing depth of 170 μm.
Fig. 3
Fig. 3 MFDs (a) and propagation losses (b) versus pulse energy and translation speed for waveguides inscribed in the cumulative heating regime using 5.1 MHz repetition rate pulses.
Fig. 4
Fig. 4 End on view of the inscribed waveguides using 1.5 ps pulses and a slit width of 520 μm (top) and 320 μm (bottom). The structures were written with the following parameters: 40× objective, pulse energy 200, 350 and 500 nJ (left to right), translation speed 1.5 mm/min, 4 overpasses. Small stress fractures are apparent in the waveguides inscribed with 350 and 500 nJ pulse energy and the 320 μm wide slit.
Fig. 5
Fig. 5 MFDs in microns at 1550 nm as function of pulse energy for waveguides written in GLS with 1.5 ps pulse duration at 1 kHz repetition rate using a 40× objective and a translation speed of 1.5 mm/min.
Fig. 6
Fig. 6 Mode-field profiles at 1550 nm of waveguides inscribed with 200 nJ pulse energy using a 320 μm slit for (a) single and (b) 8 overpasses and (c) Corning SMF-28e.
Fig. 7
Fig. 7 End on microscope images of multiscan waveguides inscribed using 20, 30 and 90 nJ (a, b, c) pulse energy at a repetition rate of 728 kHz with a pulse duration <50 fs and a translation speed of 400 mm/min.
Fig. 8
Fig. 8 MFDs of waveguides inscribed with a range of pulse energies, translation speeds and repetition rates of (a) 255 kHz, (b) 510 kHz, (c) 728 kHz and (d) 1020 kHz. The insets in (c) show the smallest mode-profile (left) of 10.1 ± 0.8 μm obtained using the multiscan technique (728 kHz, 25 nJ, 800 mm/min) in comparison to the mode-profile of a Corning SMF-28e fiber (right).
Fig. 9
Fig. 9 Comparison of the propagation losses of multiscan waveguides inscribed with a range of pulse energies, translation speeds and repetition rates of (a) 255 kHz, (b) 510 kHz, (c) 728 kHz and (d) 1020 kHz.
Fig. 10
Fig. 10 MFD at 3.39 μm over translation speed and pulse energy at repetition rate of (a) 510 kHz, (b) 728 kHz, (c) 1020 kHz and (d) smallest mode found for 3.39 μm wavelength (25 μm). The waveguide (11.3×20.1 μ) was inscribed with 1020 kHz repetition rate, 50 nJ pulse energy and 1000 mm/min translation speed.

Tables (3)

Tables Icon

Table 1 Summary of the tested inscription parameters.

Tables Icon

Table 2 Summary of the propagation losses for waveguides written in GLS with 1.5 ps pulse duration using a 40× objective, 1.5 mm/min translation speed and a 320 μm slit.

Tables Icon

Table 3 Comparison between the different regimes for the inscription of waveguides into GLS glass.

Metrics