Abstract

Metasurface based and physical ruling based diffraction gratings function by controlling the phase of light, but the origin of the phase control is different. Here we compare the simulated optical response of a 1800 lines/mm ruled diffraction grating blazed for 650 nm light to the response of a 1800 lines/mm phase grating meta-surface designed for efficiency in the visible. The efficiencies are comparable; the transverse electric polarized efficiency of the meta-surface based grating is similar to the transverse magnetic polarized efficiency of the ruled-grating. However, due to the different mechanisms of phase accrual, the meta-surface based grating does not exhibit grating anomalies and has low efficiency for transverse magnetic polarized light.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

11 December 2015: A correction was made to Ref. 1.


OSA Recommended Articles
Diffraction Anomalies in Grating Spectrophotometers

James E. Stewart and William S. Gallaway
Appl. Opt. 1(4) 421-430 (1962)

Using the compensating effect for Rayleigh anomalies to design a type of broadband mid-IR grating

Shanwen Zhang and Bayanheshig
Opt. Express 16(10) 7049-7054 (2008)

Electromagnetic study of transmission gratings

M. Neviere
Appl. Opt. 30(31) 4540-4547 (1991)

References

  • View by:
  • |
  • |
  • |

  1. D. Rittenhouse, “Explanation of an optical deception,” T. A. Philos. Soc. 2, 37–42 (1786).
  2. J. Fraunhofer, “Kurzer bericht von den resultaten neuerer versucheüber die gesetze des lichtes, und die theorie derselben,” Ann. Phys.-Berlin 74(8), 337–378 (1823).
    [Crossref]
  3. C. Palmer, Diffraction Grating Handbook (Newport Corporation, 2014).
  4. L. Lewin, “The electrical constants of a material loaded with spherical particles,” Pr. Inst. Electr. 94, 65–68 (1947).
  5. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  6. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  7. N. Yu and F. Capasso, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  8. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  9. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  10. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  11. A. Pors and S.I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [Crossref] [PubMed]
  12. A. Pors, M.G. Nielsen, and S.I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  13. D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  14. S. Larouche and D.R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37(12), 2391–2393 (2012).
    [Crossref] [PubMed]
  15. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref]
  16. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  17. Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
    [Crossref]
  18. A. Pors, O. Albrektsen, I.P. Radko, and S.I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
    [Crossref] [PubMed]
  19. D.A. Pommet, M.G. Moharam, and E.B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994).
    [Crossref]
  20. E.G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am. 68(4), 496–502 (1978).
    [Crossref]
  21. Inc. Lumerical Solutions.
  22. E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
    [Crossref]
  23. E.G. Loewen and E. Popov, Diffraction Gratings and Applications, (CRC Press, 1997).

2014 (3)

N. Yu and F. Capasso, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (6)

S. Larouche and D.R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37(12), 2391–2393 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

1994 (1)

1982 (1)

1978 (1)

1977 (1)

E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Pr. Inst. Electr. 94, 65–68 (1947).

1823 (1)

J. Fraunhofer, “Kurzer bericht von den resultaten neuerer versucheüber die gesetze des lichtes, und die theorie derselben,” Ann. Phys.-Berlin 74(8), 337–378 (1823).
[Crossref]

1786 (1)

D. Rittenhouse, “Explanation of an optical deception,” T. A. Philos. Soc. 2, 37–42 (1786).

Aieta, F.

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Albrektsen, O.

A. Pors, O. Albrektsen, I.P. Radko, and S.I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Boltasseva, A.

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Boyraz, O.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Bozhevolnyi, S.I.

Brongersma, M.L.

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Capolino, F.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Chen, W.T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Emani, N.K.

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fraunhofer, J.

J. Fraunhofer, “Kurzer bericht von den resultaten neuerer versucheüber die gesetze des lichtes, und die theorie derselben,” Ann. Phys.-Berlin 74(8), 337–378 (1823).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Grann, E.B.

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kalyoncu, S.K.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Kats, M.A.

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A.V.

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Larouche, S.

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Pr. Inst. Electr. 94, 65–68 (1947).

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Liao, C.Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Loewen, E.G.

E.G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am. 68(4), 496–502 (1978).
[Crossref]

E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
[Crossref]

E.G. Loewen and E. Popov, Diffraction Gratings and Applications, (CRC Press, 1997).

Lu, Y.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Maystre, D.

E.G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am. 68(4), 496–502 (1978).
[Crossref]

E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
[Crossref]

Moharam, M.G.

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nevière, M.

E.G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am. 68(4), 496–502 (1978).
[Crossref]

E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
[Crossref]

Ni, X.

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Nielsen, M.G.

Palmer, C.

C. Palmer, Diffraction Grating Handbook (Newport Corporation, 2014).

Pommet, D.A.

Popov, E.

E.G. Loewen and E. Popov, Diffraction Gratings and Applications, (CRC Press, 1997).

Pors, A.

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Radko, I.P.

A. Pors, O. Albrektsen, I.P. Radko, and S.I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Rittenhouse, D.

D. Rittenhouse, “Explanation of an optical deception,” T. A. Philos. Soc. 2, 37–42 (1786).

Shalaev, V.M.

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Smith, D.R.

Sun, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Torun, R.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Tsai, D.P.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Yablonovitch, E.

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhao, Q.

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

Zhou, L.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Ann. Phys.-Berlin (1)

J. Fraunhofer, “Kurzer bericht von den resultaten neuerer versucheüber die gesetze des lichtes, und die theorie derselben,” Ann. Phys.-Berlin 74(8), 337–378 (1823).
[Crossref]

Appl. Optics (1)

E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Optics 16(10), 2711–2721 (1977).
[Crossref]

Appl. Phys. Lett. (1)

Y. Huang, Q. Zhao, S.K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, and O. Boyraz, “Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging,” Appl. Phys. Lett. 104(16), 161106 (2014).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W.T. Chen, C.Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Pr. Inst. Electr. (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Pr. Inst. Electr. 94, 65–68 (1947).

Sci. Rep. (1)

A. Pors, O. Albrektsen, I.P. Radko, and S.I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Science (3)

X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M.L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Flat optics with designer metasurfaces,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

T. A. Philos. Soc. (1)

D. Rittenhouse, “Explanation of an optical deception,” T. A. Philos. Soc. 2, 37–42 (1786).

Other (3)

C. Palmer, Diffraction Grating Handbook (Newport Corporation, 2014).

Inc. Lumerical Solutions.

E.G. Loewen and E. Popov, Diffraction Gratings and Applications, (CRC Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic detailing the unit cell of the ruled-grating (left) and the meta-grating (right). The ruled-grating is constructed by periodically repeating in the x direction the cross section shown on the bottom left. The meta-grating is constructed by tiling the cuboidal unit cell illustrated by the top view shown on the top right and the central cross section shown on the bottom right. The unit cell is built of four meta-atoms consisting of silver nano-antennas patterned on a magnesium floride/silver substrate. The meta-atoms that make up the unit cell are numbered in order of decreasing phase. A plane wave is incident on both structures at angle α measured from the grating normal. The relevant parameters are Lx = 555.5 nm, χ=35.8°, Ly = 221 nm, Tb = 130 nm, Tm = 75 nm, Tt = 30 nm, l1 = 84.6 nm, w1 = 105 nm, l2 = 47.7 nm, w2 = 105 nm, l3 = 177 nm, w3 = 50 nm, l4 = 150 nm, and w4 = 105 nm.
Fig. 2
Fig. 2 The individual optical responses of the four meta-atoms used to construct the unit cell plotted as a function of wavelength. Plotted in (a) is the amplitude and in (b) is the phase of the complex reflection coefficient, r = |r|e, for a normally incident plane wave on a uniform periodic array of the four meta-atoms. The legend inset in (a) indicates color and line style used for each meta-atom. The dotted gray lines in (b) show the ideal scenario where the phase of each subsequent meta-atom is shifted by 2π/4. (c) The absolute efficiencies predicted based on the reflectivities are greater than 50% over a wide bandwidth.
Fig. 3
Fig. 3 Comparison of the m=+1 simulated absolute grating efficiencies for the ruled-grating (first-row) and the meta-gratings (second-row) as a function of polarization (columns), incident angle, and wavelength. Curves of different color correspond to different wavelength light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin ( α ) + sin ( β ) = m λ L x ,

Metrics