Abstract

Metal antennas-substrate coupled structures have unique features of strong nanoscale light confinement and field enhancement at the gap, which make them attractive and promising in a variety of applications such as sensing, lasing, and solar cell. Here, we built a coupled system consisting of a gold spherical semishell antenna and gold substrate. Through numerical simulation, it is found that due to the unique geometric shape of the antenna, the near-field enhancement area of the localized resonance is enlarged dramatically in the designed plasmonic structure, which is beneficial to increasing the active region, allowing more molecular adsorbed and also replaced easily. Moreover, the far-field extinction spectra of the localized dipole mode in the designed structure has higher quality factor and is more robust to the gap separation than its solid counterpart, which may relax the fabrication tolerances.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas

Pablo Alonso-González, Pablo Albella, Federico Golmar, Libe Arzubiaga, Félix Casanova, Luis E. Hueso, Javier Aizpurua, and Rainer Hillenbrand
Opt. Express 21(1) 1270-1280 (2013)

Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky
Opt. Express 20(25) 27725-27739 (2012)

Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement

Yan-Hui Deng, Zhong-Jian Yang, and Jun He
Opt. Express 26(24) 31116-31128 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain and M. A. Ei-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [Crossref]
  2. M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
    [Crossref] [PubMed]
  3. M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
    [Crossref] [PubMed]
  4. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).
  5. J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
    [Crossref]
  6. W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
    [Crossref]
  7. F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
    [Crossref] [PubMed]
  8. W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
    [Crossref]
  9. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
    [Crossref]
  10. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
    [Crossref]
  11. F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
    [Crossref] [PubMed]
  12. F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
    [Crossref]
  13. Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
    [Crossref] [PubMed]
  14. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
    [Crossref] [PubMed]
  15. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
    [Crossref]
  16. A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
    [Crossref] [PubMed]
  17. A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
    [Crossref] [PubMed]
  18. M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
    [Crossref] [PubMed]
  19. X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
    [Crossref]
  20. S. Balci, E. Karademir, and C. Kocabas, “Strong coupling between localized and propagating plasmon polaritons,” Opt. Lett. 40(13), 3177–3180 (2015).
    [Crossref] [PubMed]
  21. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
    [Crossref] [PubMed]
  22. A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
    [Crossref] [PubMed]
  23. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
    [Crossref] [PubMed]
  24. M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
    [Crossref]
  25. L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
    [Crossref] [PubMed]
  26. M. A. Mahmoud and M. A. El-Sayed, “Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes,” J. Phys. Chem. B 117(16), 4468–4477 (2013).
    [Crossref] [PubMed]
  27. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd edition, (Artech House, 2005).
  28. D. R. Lide, in Handbook of Chemistry and Physics, (CRC Press, 2003).
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]

2015 (6)

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

S. Balci, E. Karademir, and C. Kocabas, “Strong coupling between localized and propagating plasmon polaritons,” Opt. Lett. 40(13), 3177–3180 (2015).
[Crossref] [PubMed]

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

2014 (2)

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

2013 (6)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
[Crossref] [PubMed]

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

M. A. Mahmoud and M. A. El-Sayed, “Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes,” J. Phys. Chem. B 117(16), 4468–4477 (2013).
[Crossref] [PubMed]

2012 (3)

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

2011 (1)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

2010 (1)

P. K. Jain and M. A. Ei-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

2008 (1)

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

2007 (2)

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

2005 (1)

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

2004 (1)

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

2003 (2)

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

1984 (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Aubry, A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Ausman, L. K.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Aydin, K.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Balci, S.

Barbillon, A. O.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Bartenlian, B.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Besbes, M.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Blaikie, R. J.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Brongersma, M. L.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Brown, K. A.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Bryche, J. F.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Butun, S.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Cai, H.

Canva, M.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Cao, Y.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Chakrabarty, A.

Chen, P. C.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Chen, X.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Chen, Y. H.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Chilkoti, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Ciracì, C.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

Coutrot, A. L.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Dai, Y.

Degiron, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Ding, B.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Ding, H.

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Dravid, V. P.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Du, L.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Ei-Sayed, M. A.

P. K. Jain and M. A. Ei-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Elmers, H. J.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes,” J. Phys. Chem. B 117(16), 4468–4477 (2013).
[Crossref] [PubMed]

Fang, H.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Francescato, Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

García de Abajo, F. J.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Halas, N. J.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Hill, R. T.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Hoang, T. B.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

Holland, W. R.

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Holsteen, A.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Hong, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Hua, Y.

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. Ei-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Käll, M.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

Karademir, E.

Kivshar, Y. S.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Kocabas, C.

Kreiter, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Le, F.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

Lei, D. Y.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Li, Z.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Lin, Q. Y.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Lwin, N. Z.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes,” J. Phys. Chem. B 117(16), 4468–4477 (2013).
[Crossref] [PubMed]

Maier, S. A.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Mandal, H. S.

M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
[Crossref] [PubMed]

Manjavacas, A.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

McClain, M. J.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

McGuire, F.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Mendis, M. N.

M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
[Crossref] [PubMed]

Mikkelsen, M. H.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

Min, C.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Minkowski, F.

Mirkin, C. A.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Miroshnichenko, A. E.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Miyata, M.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Mock, J. J.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Mohammadi, R.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Moreau, J.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Nagasaki, Y.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Nordlander, P.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

O’Brien, M. N.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[Crossref]

Pan, N.

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

Pendry, J. B.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

Plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Prodan, E.

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qiu, M.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rahmani, M.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Ren, W.

Rose, A.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

Ross, M. B.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

Sarkar, M.

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Schatz, G. C.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

Schertz, F.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Schmelzeisen, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Schönhense, G.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

Smith, D. R.

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Steele, J. M.

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

Sun, K.

Takahara, J.

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

Tang, D.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Tribelsky, M. I.

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Waldeck, D. H.

M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
[Crossref] [PubMed]

Wang, F.

Wang, Q.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Wang, X.

Wei, Q. H.

Xiong, O.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[Crossref]

Yang, Y.

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

Yuan, G.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Yuan, X.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Zauscher, S.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

Zhang, X.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

Zhou, Y.

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

ACS Nano (1)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: A transformation optics approach,” ACS Nano 5(4), 3293–3308 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

M. Sarkar, M. Besbes, J. Moreau, J. F. Bryche, A. O. Barbillon, A. L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration,” ACS Photonics 2(2), 237–245 (2015).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. Ei-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

M. N. Mendis, H. S. Mandal, and D. H. Waldeck, “Enhanced sensitivity of delocalized plasmonic nanostructures,” J Phys Chem C Nanomater Interfaces 117(48), 25693–25703 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003).
[Crossref]

M. A. Mahmoud and M. A. El-Sayed, “Substrate effect on the plasmonic sensing ability of hollow nanoparticles of different shapes,” J. Phys. Chem. B 117(16), 4468–4477 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (3)

X. Chen, Y. Yang, Y. H. Chen, M. Qiu, R. J. Blaikie, and B. Ding, “Probing plasmonic gap resonances between gold nanorods and metallic surface,” J. Phys. Chem. C 119(32), 18627–18634 (2015).
[Crossref]

J. M. McMahon, S. Li, L. K. Ausman, and G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012).
[Crossref]

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Hybridization of localized and guided modes in 2D metal-insulator-metal nanocavity arrays,” J. Phys. Chem. C 117(6), 2541–2546 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and O. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie,” J. Phys. Chem. Lett. 4, 496–501 (2013).

Nano Lett. (8)

Q. Y. Lin, Z. Li, K. A. Brown, M. N. O’Brien, M. B. Ross, Y. Zhou, S. Butun, P. C. Chen, G. C. Schatz, V. P. Dravid, K. Aydin, and C. A. Mirkin, “Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays,” Nano Lett. 15(7), 4699–4703 (2015).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced lienwidth narrowing of an aluminum nanoparticle Plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

M. Miyata, A. Holsteen, Y. Nagasaki, M. L. Brongersma, and J. Takahara, “Gap Plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate,” Nano Lett. 15(8), 5609–5616 (2015).
[Crossref] [PubMed]

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schönhense, “Near field of strongly coupled plasmons: Uncovering dark modes,” Nano Lett. 12(4), 1885–1890 (2012).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

F. Le, N. Z. Lwin, J. M. Steele, M. Käll, N. J. Halas, and P. Nordlander, “Plasmons in the metallic nanoparticle-film system as a tunable impurity problem,” Nano Lett. 5(10), 2009–2013 (2005).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[Crossref] [PubMed]

A. Rose, T. B. Hoang, F. McGuire, J. J. Mock, C. Ciracì, D. R. Smith, and M. H. Mikkelsen, “Control of radiative processes using tunable plasmonic nanopatch antennas,” Nano Lett. 14(8), 4797–4802 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76(16), 165410 (2007).
[Crossref]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007).
[Crossref]

Phys. Rev. Lett. (1)

W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near a conducting surface,” Phys. Rev. Lett. 52(12), 1041–1044 (1984).
[Crossref]

Sci. Rep. (1)

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Small (1)

M. Rahmani, A. E. Miroshnichenko, D. Y. Lei, B. Luk’yanchuk, M. I. Tribelsky, A. I. Kuznetsov, Y. S. Kivshar, Y. Francescato, V. Giannini, M. Hong, and S. A. Maier, “Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering,” Small 10(3), 576–583 (2014).
[Crossref] [PubMed]

Other (2)

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd edition, (Artech House, 2005).

D. R. Lide, in Handbook of Chemistry and Physics, (CRC Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Extinction spectra of isolated SNS and SNS-substrate coupled system (a) and solid semisphere-substrate coupled system (b) with different gap distances, inset: schematic illustration of the SNS-substrate coupled structure and semisphere-substrate coupled structure. (c) Resonance energy shift of SNS and solid semisphere coupled system with different gap.
Fig. 2
Fig. 2 E-field distribution of SNS-substrate coupled system under (a) z-polarized (b) x-polarized incidence; E-field distribution of semisphere-substrate coupled system under c) z-polarized (b) x-polarized incidence; Two dimensional area with different enhancement factors (e) z-polarized (f) x-polarized incidence.
Fig. 3
Fig. 3 (a) Charge distribution of SNS-substrate coupled system at dipole resonance. (b) Schematic illustration of the dipole mode and image mode of the SNS-substrate coupled system.
Fig. 4
Fig. 4 Reflection spectra profile versus different array period and wavelength of SNS coupled system (a) and semisphere coupled system (b).
Fig. 5
Fig. 5 (a) Selected absorption spectra of SNS coupled system; E-field distribution at absorption peak i for (b) z- and (c) x-polarized incidence; E-field distribution at absorption peak ii for (d) and z- and (e) x-polarized incidence. The array period is 700 nm.
Fig. 6
Fig. 6 (a) Selected absorption spectra of semisphere coupled system; E-field distribution at absorption peak i for (b) z- and (c) x-polarized incidence; E-field distribution at absorption peak ii for (d) z- and (e) x-polarized incidence. The array period is 600 nm.
Fig. 7
Fig. 7 Comparison of the two-dimensional area with different enhancement factors of SNS and semisphere coupled structures for (a) z- and (b) x-polarized incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q ext = Q abs + Q sca = k π a 2 Im(α)+ k 4 6 π 2 a 2 | α | 2

Metrics