Abstract

Femtosecond laser of pulse width ~40 fs and 800 nm wavelength with a pulse energy output ~500nJ is used to modify the microstructures of ceramic wasteforms. Different compositions prepared by different processes show surface melting and solidification on exposure to laser irradiation. Structural changes are analyzed using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. SPS processed samples have higher density as compared to the melt-processed counterparts. No new phase is formed in any of the materials upon surface resolidification. Microstructures of the laser-modified area of all samples are similar despite the variation in the original microstructures from one another. XRD phase analysis and comparison of elemental maps show that homogenization and partial amorphisation of the surface occurred with hollandite phase retaining its crystallinity in an amorphous matrix.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index patterning of infrared glass ceramics through laser-induced vitrification [Invited]

Myungkoo Kang, Laura Sisken, Justin Cook, Cesar Blanco, Martin C. Richardson, Ilya Mingareev, and Kathleen Richardson
Opt. Mater. Express 8(9) 2722-2733 (2018)

Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis
J. Opt. Soc. Am. B 27(5) 1065-1076 (2010)

Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer

Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer
Appl. Opt. 53(8) 1709-1717 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).
  2. D. Caurant, Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Waste (Nova Science Publishers, 2009).
  3. A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
    [Crossref]
  4. A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
    [Crossref]
  5. S. E. Kesson and T. White, “[BaxCsy][(Ti,Al)3+2x+yTi4+8-2x-y]O16 Synroc-type hollandites: I. Phase chemistry,” Proc. R. Soc. Lond. A. Mat. 405, 73–101 (1986).
  6. V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
    [Crossref]
  7. Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
    [Crossref]
  8. S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
    [Crossref]
  9. B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).
  10. C. Suryanarayana, Permagon Materials Series, Volume 2: Non-equilibrium (Elsevier, 1999), Chap. 5.
  11. C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
    [Crossref]
  12. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
    [Crossref]
  13. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
    [Crossref]
  14. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  15. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
    [Crossref] [PubMed]
  16. J. Siegel, PhD Thesis, Instituto de Óptica “Daza de Valdés” Consejo Superior de Investigaciones Científicas Madrid, Spain, November, 1998.
  17. N. Bloembergen, “Pulsed Laser Interactions With Condensed Matter,” Proc. MRS 51, 3 (1985).
    [Crossref]
  18. P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
    [Crossref]
  19. C. Y. Ho and J. K. Lu, “A closed form solution for laser drilling of silicon nitride and alumina ceramics,” J. Mater. Process. Technol. 140(1–3), 260–263 (2003).
    [Crossref]
  20. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
    [Crossref]
  21. C. Wu, PhD Thesis, Harvard University, USA, August, 2000.
  22. K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
    [Crossref]
  23. R. Riedel, I.-W. Chen, Ceramics Science and Technology, Volume 3, Synthesis and Processing (Wiley-VCH, 2012), Chap. 8.

2014 (1)

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

2008 (1)

Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
[Crossref]

2007 (2)

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

2004 (1)

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

2003 (1)

C. Y. Ho and J. K. Lu, “A closed form solution for laser drilling of silicon nitride and alumina ceramics,” J. Mater. Process. Technol. 140(1–3), 260–263 (2003).
[Crossref]

2002 (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

2001 (1)

P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
[Crossref]

2000 (1)

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

1997 (2)

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

1995 (2)

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[Crossref] [PubMed]

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

1991 (1)

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

1985 (1)

N. Bloembergen, “Pulsed Laser Interactions With Condensed Matter,” Proc. MRS 51, 3 (1985).
[Crossref]

1979 (2)

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Advocat, T.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Alvensleben, F.

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

Amoroso, J. W.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Atanasov, P. A.

P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
[Crossref]

Aubin-Chevaldonnet, V.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Bialkowski, J.

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[Crossref] [PubMed]

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

Bloembergen, N.

N. Bloembergen, “Pulsed Laser Interactions With Condensed Matter,” Proc. MRS 51, 3 (1985).
[Crossref]

Brinkman, K. S.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Caurant, D.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Charpentier, T.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Chichkov, B. N.

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

Clark, B. M.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Dannoux, A.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Dmitriev, S.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Du, D.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

Eugenieva, E. D.

P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
[Crossref]

Giere, R.

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

Gourier, D.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Hibberson, W.

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Hibberson, W. O.

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

Ho, C. Y.

C. Y. Ho and J. K. Lu, “A closed form solution for laser drilling of silicon nitride and alumina ceramics,” J. Mater. Process. Technol. 140(1–3), 260–263 (2003).
[Crossref]

Kesson, S.

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Kesson, S. E.

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

Knyazev, O.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Li, H.

Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
[Crossref]

Lu, J. K.

C. Y. Ho and J. K. Lu, “A closed form solution for laser drilling of silicon nitride and alumina ceramics,” J. Mater. Process. Technol. 140(1–3), 260–263 (2003).
[Crossref]

Lumpkin, G. R.

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

Major, A.

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Marra, J. C.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Mazerolles, L.

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Momma, C.

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

Moricca, S.

Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
[Crossref]

Nedialkov, N. N.

P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
[Crossref]

Nikonov, B.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Nolte, S.

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

Ptashkin, A.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Ringwood, A. E.

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

Schulz, H.

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

Singh, R. K.

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

Sokolowski-Tinten, K.

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[Crossref] [PubMed]

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

Stefanovsky, S.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Stefanovsky, S. V.

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

Sundaram, S. K.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Tumurugoti, P.

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Tunnermann, A.

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

von der Linde, D.

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[Crossref] [PubMed]

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

Ware, N.

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Ware, N. G.

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

Yudintsev, S.

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

Yudintsev, S. V.

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

Zhang, Y.

Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, “Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs,” Appl. Phys., A Mater. Sci. Process. 53(3), 227–234 (1991).
[Crossref]

Appl. Surf. Sci. (3)

C. Momma, S. Nolte, B. N. Chichkov, F. Alvensleben, and A. Tunnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109–110, 15–19 (1997).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

Geochem. J. (1)

A. E. Ringwood, S. E. Kesson, N. G. Ware, W. O. Hibberson, and A. Major, “SYNROC Processes – Geochemical Approach to Nuclear Waste Immobilization,” Geochem. J. 13(4), 141–165 (1979).
[Crossref]

Geol. Soc. Lond. Spec. Publ. (1)

S. V. Stefanovsky, S. V. Yudintsev, R. Giere, and G. R. Lumpkin, “Nuclear Waste Forms,” Geol. Soc. Lond. Spec. Publ. 236, 37–63 (2004).

J. Alloys Compd. (1)

S. Stefanovsky, A. Ptashkin, O. Knyazev, S. Dmitriev, S. Yudintsev, and B. Nikonov, “Inductive cold crucible melting of actinide-bearing murataite-based ceramics,” J. Alloys Compd. 444–445, 438–442 (2007).
[Crossref]

J. Appl. Phys. (2)

P. A. Atanasov, E. D. Eugenieva, and N. N. Nedialkov, “Laser drilling of silicon nitride and alumina ceramics: A numerical and experimental study,” J. Appl. Phys. 89(4), 2013–2016 (2001).
[Crossref]

P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78(10), 6233–6240 (1995).
[Crossref]

J. Mater. Process. Technol. (1)

C. Y. Ho and J. K. Lu, “A closed form solution for laser drilling of silicon nitride and alumina ceramics,” J. Mater. Process. Technol. 140(1–3), 260–263 (2003).
[Crossref]

J. Nucl. Mater. (2)

V. Aubin-Chevaldonnet, D. Caurant, A. Dannoux, D. Gourier, T. Charpentier, L. Mazerolles, and T. Advocat, “Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization,” J. Nucl. Mater. 366(1–2), 137–160 (2007).
[Crossref]

Y. Zhang, H. Li, and S. Moricca, “Pyrochlore-structured titanate ceramics for immobilisation of actinides: Hot isostatic pressing (HIPing) and stainless steel/waste form interactions,” J. Nucl. Mater. 377(3), 470–475 (2008).
[Crossref]

Metall. Mater. Trans. E (1)

B. M. Clark, P. Tumurugoti, S. K. Sundaram, J. W. Amoroso, J. C. Marra, and K. S. Brinkman, “Microstructures of Melt-Processed and Spark Plasma Sintered Ceramic Waste Forms,” Metall. Mater. Trans. E 1(4), 341–348 (2014).

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nature (1)

A. E. Ringwood, S. Kesson, N. Ware, W. Hibberson, and A. Major, “Immobilisation of high level nuclear reactor wastes in SYNROC,” Nature 278(5701), 219–223 (1979).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[Crossref] [PubMed]

Proc. MRS (1)

N. Bloembergen, “Pulsed Laser Interactions With Condensed Matter,” Proc. MRS 51, 3 (1985).
[Crossref]

Other (6)

R. Riedel, I.-W. Chen, Ceramics Science and Technology, Volume 3, Synthesis and Processing (Wiley-VCH, 2012), Chap. 8.

J. Siegel, PhD Thesis, Instituto de Óptica “Daza de Valdés” Consejo Superior de Investigaciones Científicas Madrid, Spain, November, 1998.

C. Wu, PhD Thesis, Harvard University, USA, August, 2000.

S. E. Kesson and T. White, “[BaxCsy][(Ti,Al)3+2x+yTi4+8-2x-y]O16 Synroc-type hollandites: I. Phase chemistry,” Proc. R. Soc. Lond. A. Mat. 405, 73–101 (1986).

D. Caurant, Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Waste (Nova Science Publishers, 2009).

C. Suryanarayana, Permagon Materials Series, Volume 2: Non-equilibrium (Elsevier, 1999), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Microstructures of different waste forms indicating the phase distribution – hollandite (H), perovskite (P), Zr-rich phase (Z) and TiO2 (T).
Fig. 2
Fig. 2 Microstructure (top view) showing the effect of laser irradiation on the surface of a melt-processed sample (CAF-MP-Melt).
Fig. 3
Fig. 3 Microstructures of cross-sections showing the extent of laser-induced modification.
Fig. 4
Fig. 4 Microstructures showing similar phase assemblages of resolidified surface on different samples.
Fig. 5
Fig. 5 Comparison of XRD patterns collected from original untreated surface and laser-modified surface. Different phases are labeled to the corresponding peaks – hollandite (H), perovskite (P), Zr-rich phase (Z) and TiO2 (T).
Fig. 6
Fig. 6 WDS maps showing the distributions of selected elements in Cr/Al/Fe-Multiphase prepared by melt-processing (CAF-MP-Melt). BSE indicates the corresponding back-scattered image of the scanned area. Cs rich ‘bright’ areas were evident along the cracks of resolidified material. These were not seen in the corresponding BSE image of CAF-MP-Melt (Fig. 4). This Cs segregation was an undesired effect, observed to develop with time only for epoxy-mounted samples of this composition.
Fig. 7
Fig. 7 WDS maps showing the distributions of selected elements in Cr/Al/Fe-Multiphase prepared by SPS (CAF-MP-SPS). BSE indicates the corresponding back-scattered image.
Fig. 8
Fig. 8 WDS maps showing the distributions of selected elements in Cr-Multiphase prepared by melt-processing (Cr-MP-Melt). BSE indicates the corresponding back-scattered image.
Fig. 9
Fig. 9 WDS maps showing the distributions of selected elements in Cr-Multiphase prepared by SPS (Cr-MP-SPS). BSE indicates the corresponding back-scattered image.

Tables (1)

Tables Icon

Table 1 Different materials used in this study and their corresponding notations

Metrics