Abstract

Er3+ doped tellurite fibers have been fabricated using a convenient suction technique. Different scanning calorimetry (DSC), Electro-probe micro-analyzer (EPMA), Raman, steady and dynamic luminescence spectra were performed to investigate their thermal, structure, and luminescent properties. Broadband 2.7 μm amplified spontaneous emission (ASE) emission with concurrent 1.5 μm and visible up-conversion emissions have been achieved in fibers with various lengths upon the excitation of 980 nm laser diode (LD). A quantitative study of the spectroscopic properties has been further analyzed in detail according to the Jude-Ofelt model, rate equation, and Dexter’s theory to evaluate the competitive relationship among them. The desirable spectroscopic characteristics associated with excellent thermal stability and mechanical properties indicate that the Er3+ doped tellurite fibers are excellent host matrices for 2.7 μm lasing and may provide applications in mid-infrared fiber lasers and amplifiers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic and structural characterization of barium tellurite glass fibers for mid-infrared ultra-broad tunable fiber lasers

W. C. Wang, W. J. Zhang, L. X. Li, Y. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang
Opt. Mater. Express 6(6) 2095-2107 (2016)

Synthesis, theoretical analysis, and characterization of highly Er3+ doped fluoroaluminate–tellurite glass with 2.7 μm emission

Ying Tian, Xufeng Jing, Bingpeng Li, Pengcheng Li, Yinyan Li, Ruoshan Lei, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(10) 3274-3285 (2016)

2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser

L. X. Li, W. C. Wang, C. F. Zhang, J. Yuan, B. Zhou, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2904-2914 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  2. B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
    [Crossref]
  3. W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
    [Crossref]
  4. T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
    [Crossref]
  5. J. Šulc, M. Němec, R. Švejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
    [Crossref] [PubMed]
  6. B. J. Dinerman and P. F. Moulton, “3- μm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
    [Crossref] [PubMed]
  7. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8- μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
    [Crossref] [PubMed]
  8. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref] [PubMed]
  9. J. Schneider, “Fluoride fibre laser operating at 3.9 µm,” Electron. Lett. 31(15), 1250–1251 (1995).
    [Crossref]
  10. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  11. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  12. F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
    [Crossref] [PubMed]
  13. F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
    [Crossref] [PubMed]
  14. M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
    [Crossref]
  15. Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
    [Crossref]
  16. S. Balaji, A. D. Sontakke, R. J. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism,” Opt. Mater. Express 1(2), 138–150 (2011).
  17. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
    [Crossref] [PubMed]
  18. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
    [Crossref]
  19. K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
    [Crossref] [PubMed]
  20. X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
    [Crossref]
  21. X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
    [Crossref]
  22. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
    [Crossref]
  23. Y. Wang, J. F. Li, Z. J. Zhu, Z. Y. You, J. L. Xu, and C. Y. Tu, “Mid-infrared emission in Dy:YAlO3 crystal,” Opt. Mater. Express 4(6), 1104–1111 (2014).
    [Crossref]
  24. W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
    [Crossref]
  25. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
    [Crossref]
  26. F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials,” Appl. Opt. 52(7), 1399–1403 (2013).
    [Crossref] [PubMed]
  27. S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
    [Crossref]
  28. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
    [Crossref] [PubMed]
  29. Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
    [Crossref]
  30. B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
    [Crossref]
  31. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
    [Crossref] [PubMed]
  32. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
    [Crossref]
  33. X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
    [Crossref]
  34. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  35. X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
    [Crossref]
  36. S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
    [Crossref]
  37. T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
    [Crossref] [PubMed]
  38. J. L. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing Limited, 2014), Chap. 11.
  39. R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

2015 (6)

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

2014 (7)

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Y. Wang, J. F. Li, Z. J. Zhu, Z. Y. You, J. L. Xu, and C. Y. Tu, “Mid-infrared emission in Dy:YAlO3 crystal,” Opt. Mater. Express 4(6), 1104–1111 (2014).
[Crossref]

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (4)

2010 (2)

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

2009 (2)

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

2008 (1)

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

2007 (1)

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

2003 (1)

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

2002 (1)

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
[Crossref]

2001 (1)

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
[Crossref]

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
[Crossref]

1996 (2)

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8- μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
[Crossref] [PubMed]

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

1995 (1)

J. Schneider, “Fluoride fibre laser operating at 3.9 µm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

1994 (2)

1985 (1)

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

1965 (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
[Crossref]

Adam, J. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Anne, M. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Balaji, S.

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Brik, M. G.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Cai, M.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Cai, M. Z.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

Camy, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
[Crossref]

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chai, B. H. T.

Charpentier, F.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chen, D.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref] [PubMed]

Chen, D. D.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Chen, D. P.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Chen, F.

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Chen, X.

Clarkson, A.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Diening, A.

Dinerman, B. J.

Doroshenko, M. E.

Doualan, J. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Dubinskii, M.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Dyer, K.

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

Eyal, M.

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

Fan, X. K.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Fedorov, P. P.

Feng, X.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Gruber, J. B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Guo, Y.

Han, J. J.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
[Crossref]

Hashida, M.

Hayes, J. R.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Heo, J.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Hewak, D.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Hu, L.

Hu, L. L.

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Huang, F.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials,” Appl. Opt. 52(7), 1399–1403 (2013).
[Crossref] [PubMed]

Huber, G.

Hutchinson, J. A.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jelínková, H.

Jensen, T.

Jha, A.

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

Jiang, Y.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Jiang, Z. H.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Jing, X.

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Kalyandurg, A.

Kang, S.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

Kasap, S.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

Koughia, K.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

Kuan, P. W.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Li, J. F.

Li, K.

Li, K. F.

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Li, M.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Li, W. T.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Li, X.

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Lin, H.

Lin, Z. B.

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

Liu, C.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Liu, H.

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

Liu, X.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

Liu, X. Q.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Liu, X. Y.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Loh, W. H.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Loréal, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lousteau, J.

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

Lucas, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lucas, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Ma, Y.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials,” Appl. Opt. 52(7), 1399–1403 (2013).
[Crossref] [PubMed]

Machewirth, D. P.

Monbet, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Morgan, S. H.

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

Mori, A.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
[Crossref]

Moulton, P. F.

Murakami, M.

Naftaly, M.

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
[Crossref]

Nazabal, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Nemec, M.

Ohishi, Y.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
[Crossref]

Osiko, V. V.

Pan, Z. D.

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

Petrovich, M. N.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Qian, Q.

Quetel, L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Reisfeld, R.

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

Rusell, P. St. J.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Sakabe, S.

Sanamyan, T.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Sardar, D. K.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Schneider, J.

J. Schneider, “Fluoride fibre laser operating at 3.9 µm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

Seddon, A. B.

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Sen, R. J.

Shen, S. X.

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
[Crossref]

Shimizu, S.

Simmons, J.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Sire, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Snitzer, E.

Sontakke, A. D.

Soundararajan, G.

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

Stewart, W.

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
[Crossref]

Šulc, J.

Švejkar, R.

Tanabe, S.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
[Crossref]

Tang, G.

Tao, H. Z.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Tariel, H.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Tian, Y.

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

Tokita, S.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Trussell, C. W.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Tu, C. Y.

Ueda, A.

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

Vogel, E. M.

Wang, F.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Wang, G. F.

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

Wang, J.

Wang, J. S.

Wang, L. F.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Wang, W. C.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Wang, X.

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

Wang, Y.

Wei, B.

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

Wei, T.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Wen, X.

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Wu, F.

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
[Crossref]

Xu, J. L.

Xu, R.

Xu, S.

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Xu, S. Q.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Yang, A.

Yang, Z.

You, Z. Y.

Yu, Y.

Yuan, J.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Zandi, B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Zhang, G.

Zhang, J.

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials,” Appl. Opt. 52(7), 1399–1403 (2013).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

Zhang, J. H.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Zhang, J. J.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

Zhang, L.

Zhang, L. Z.

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

Zhang, Q.

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Zhang, Q. Y.

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

Zhao, X. J.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Zhao, Z. Y.

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

Zhou, B. E.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

Zhou, J. J.

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

Zhu, Z. J.

Appl. Opt. (1)

Electron. Lett. (2)

J. Schneider, “Fluoride fibre laser operating at 3.9 µm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik, “Optical and photoluminescence properties of erbium-doped chalcogenide glasses (GeGaS:Er),” IEEE J. Sel. Top. Quantum Electron. 14(5), 1353–1360 (2008).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Alloys Compd. (2)

M. Z. Cai, T. Wei, B. E. Zhou, Y. Tian, J. J. Zhou, S. Q. Xu, and J. J. Zhang, “Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials,” J. Alloys Compd. 626, 165–172 (2015).
[Crossref]

X. K. Fan, K. F. Li, X. Li, P. W. Kuan, X. Wang, and L. L. Hu, “Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers,” J. Alloys Compd. 615, 475–481 (2014).
[Crossref]

J. Appl. Phys. (2)

Z. D. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79(12), 8906–8913 (1996).
[Crossref]

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+,” J. Chem. Phys. 42(11), 3797–3806 (1965).
[Crossref]

J. Non-Cryst. Solids (4)

W. C. Wang, J. Yuan, X. Y. Liu, D. D. Chen, Q. Y. Zhang, and Z. H. Jiang, “An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modified germanate glasses for a diode-pump mid-infrared laser,” J. Non-Cryst. Solids 404, 19–25 (2014).
[Crossref]

X. Jiang, J. Lousteau, S. X. Shen, and A. Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355(37), 2015–2019 (2009).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281(1), 48–54 (2001).
[Crossref]

Z. Y. Zhao, C. Liu, Y. Jiang, J. H. Zhang, H. Z. Tao, J. J. Han, X. J. Zhao, and J. Heo, “Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics,” J. Non-Cryst. Solids 404, 37–42 (2014).
[Crossref]

J. Phys. (1)

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

J. Phys. D Appl. Phys. (1)

B. Wei, Z. B. Lin, L. Z. Zhang, and G. F. Wang, “Growth and spectroscopic characterization of Er3+: Ca3La2(BO3)4 crystal,” J. Phys. D Appl. Phys. 40(9), 2792–2796 (2007).
[Crossref]

Laser Phys. Lett. (1)

T. Sanamyan, J. Simmons, and M. Dubinskii, “Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7(8), 569–572 (2010).
[Crossref]

Mater. Lett. (1)

X. Q. Liu, X. Wang, L. F. Wang, P. W. Kuan, M. Li, W. T. Li, X. K. Fan, K. F. Li, L. L. Hu, and D. P. Chen, “Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Nat. Photonics (2)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Rusell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

S. X. Shen, M. Naftaly, and A. Jha, “Tungsten–tellurite – a host glass for broadband EDFA,” Opt. Commun. 205(1), 101–105 (2002).
[Crossref]

Opt. Eng. (1)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J. L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J. L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

J. Šulc, M. Němec, R. Švejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, “Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser,” Opt. Lett. 38(17), 3406–3409 (2013).
[Crossref] [PubMed]

B. J. Dinerman and P. F. Moulton, “3- μm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
[Crossref] [PubMed]

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8- μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21(8), 585–587 (1996).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Proc. SPIE (1)

W. H. Loh, D. Hewak, M. N. Petrovich, J. R. Hayes, W. Stewart, and A. Clarkson, “Emerging optical fibre technologies with potential defence applications,” Proc. SPIE 8542, 85421F (2012).
[Crossref]

RSC Advances (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Sci. Rep. (3)

F. Chen, T. Wei, X. Jing, Y. Tian, J. Zhang, and S. Xu, “Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass,” Sci. Rep. 5, 10676 (2015).
[Crossref] [PubMed]

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
[Crossref] [PubMed]

T. Wei, Y. Tian, F. Chen, M. Cai, J. Zhang, X. Jing, F. Wang, Q. Zhang, and S. Xu, “Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass,” Sci. Rep. 4, 6060 (2014).
[Crossref] [PubMed]

Other (1)

J. L. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing Limited, 2014), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Put the preheated copper mold in the position of 45° with the horizontal line while preparing the cladding glass melt; (b) Pour the cladding glass melt into the mold along the sprue; (c) Erect the mold and then pour the core glass melt quickly and smoothly; (d) Photographs of the annealed glass preform (e) and fiber.
Fig. 2
Fig. 2 (a) Absorption spectrum of Er3+ doped tellurite glass; (b) FTIR absorption coefficient spectra of the core and cladding glasses.
Fig. 3
Fig. 3 (a) DSC curve and (b) Raman spectrum of the tellurite glass.
Fig. 4
Fig. 4 The optical micrograph (a) and EPMA measurement (b–f) of the tellurite fiber cross section.
Fig. 5
Fig. 5 (a) The refractive indices of the core and cladding glasses and numerical aperture of the fiber as a function of wavelength; (b) Cutback measurement of Er3+ doped tellurite fiber.
Fig. 6
Fig. 6 ASE spectra of Er3+ doped tellurite fibers with various lengths in the wavelength range of 2550–2850 nm (a), 1400–1700 nm (b), and 500–700 nm (c) upon excitation of 980 nm LD, respectively, and in the wavelength range of 900–1150 nm (d) upon excitation of 808 nm LD.
Fig. 7
Fig. 7 (a) Luminescence decay dynamics of Er3+ monitored at 1.5 μm, 980 nm, 663 nm, and 546 nm upon excitation of 980 and 808 nm LDs; (b) Lifetime values of Er3+ different levels as a function of length.
Fig. 8
Fig. 8 Absorption and emission cross sections around the (a) 2.7 μm and (b) 1.5 μm in Er3+ doped tellurite glass and their according gain coefficients (c–d) as a function of wavelength with different p values.
Fig. 9
Fig. 9 (a) Dependence of multi-phonon relaxation rates on energy gap for the present glass; (b) A plot of (N0/Nt)exp(–t/τm)–1 as a function of 1–exp(–t/τm) for 1.5 μm and 980 nm luminescent decay.
Fig. 10
Fig. 10 Simplified energy level diagram of the Er3+-doped glass under 980 nm LD excitation.

Tables (4)

Tables Icon

Table 1 Basic physical property data of the Er3+ doped tellurite glass.

Tables Icon

Table 2 J-O intensity parameters of Er3+ doped tellurite glass in comparison with other glass systems [26–29].

Tables Icon

Table 3 Predicted spontaneous radiative transition probabilities, branching ratios and radiative lifetimes of Er3+ in the present glass.

Tables Icon

Table 4 Basic spectral parameters of Er3+ doped tellurite glass.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )=1+ S λ 2 λ 2 λ 0 2
NA= ( n core 2 n cladding 2 ) 1/2
G( λ )=N[ p σ e ( 1p ) σ a ]
W mp = 1 τ m 1 τ rad
W mp = W 0 exp( αΔE )
γ=exp( αω )
d N t dt = N t τ m 2 C ETU2 N t 2
N 0 N t exp( t τ m )1=2 C ETU2 N 0 τ m [ 1exp( t τ m ) ]
N 0 = R τ m +1 4 C ETU2 τ m [ ( 1+ 8 C ETU2 N Er R τ m 2 ( R τ m +1 ) 2 ) 2 1 ]
k=2 N 0 C ETU2 τ m
C DA = 6c g low D ( 2π ) 4 n 2 g up D m=0 e ( 2 n ¯ +1 ) S 0 S 0 m m! ( n ¯ +1 ) m σ ems D ( λ m + ) σ ems D ( λ )dλ

Metrics