Abstract

The spectroscopic properties of cerium ions in various aluminosilicate glasses modified by Mg2+, Ca2+, Ba2+ and Na+ were investigated in order to optimize these for the potential utilization as Ce3+/Yb3+ quantum cutting material. An increasing optical basicity of the glasses results in a shift in the peak position of the 5d-4f emission of Ce3+ to longer wavelengths and in a decrease in the Ce3+ fluorescence intensity due to decreasing Ce3+/Ce4+ ratios. Argon-bubbling of the melt and supplying argon as melting atmosphere and/or using small amounts of metallic aluminum powder as raw material led to an almost complete reduction of Ce4+ to Ce3+. This resulted in much higher intensities of the Ce3+ fluorescence emission which runs parallel to a decreasing charge transfer absorption of Ce4+. From the absorption spectra of these samples extinction coefficients for Ce4+ and Ce3+ were calculated. For this purpose, an additional sample was prepared by using oxygen bubbling of the melt. An increasing cerium concentration shifts the Ce3+ emission peak position to longer wavelengths, while up to 2·1020 ions per cm3 only a slight increase in the Ce3+ emission intensity was observed. At higher dopant concentrations, a drastic decrease in the Ce3+ fluorescence emission is observed which is most likely attributed to an increasing Ce4+ concentration. High intensity Ce3+ blue emission matching the spectroscopic requirements for potential quantum cutting in Ce3+/Yb3+ codoped glasses could be achieved with a barium aluminosilicate glass.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses

Yannick Guyot, Alysson Steimacher, Marcos P. Belançon, Antonio N. Medina, Mauro L. Baesso, Sandro M. Lima, Luis H. C. Andrade, Alain Brenier, Anne-Marie Jurdyc, and Georges Boulon
J. Opt. Soc. Am. B 28(10) 2510-2517 (2011)

Spectroscopic properties of lead fluoroborate glasses doped with ytterbium

Luciana R. P. Kassab, Sonia H. Tatumi, Alessandro S. Morais, Lilia C. Courrol, Niklaus U. Wetter, and V. L. R. Salvador
Opt. Express 8(10) 585-589 (2001)

Magnetic properties and photoluminescence of thulium-doped calcium aluminosilicate glasses

Byoungjin So, Jiangbo She, Yicong Ding, Jinsuke Miyake, Taisuke Atsumi, Katsuhisa Tanaka, and Lothar Wondraczek
Opt. Mater. Express 9(11) 4348-4359 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
    [Crossref]
  2. H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
    [Crossref]
  3. S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
    [Crossref]
  4. T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie,” Z. Naturforschung 4a, 321–327 (1949).
  5. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  6. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
    [Crossref]
  7. D. L. Dexter, “Cooperative optical absorption in solids,” Phys. Rev. 126(6), 1962–1967 (1962).
    [Crossref]
  8. M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
    [Crossref]
  9. H. Scholze, Glass - Nature, Structure, and Properties (New York, 1991).
  10. A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
    [Crossref]
  11. J. E. Ritter and C. L. Sherburne, “Dynamic and Static Fatigue of Silicate Glasses,” J. Am. Ceram. Soc. 54(12), 601–605 (1971).
    [Crossref]
  12. M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
    [Crossref]
  13. A. Paul and R. W. Douglas, “Cerous Ceric Equilibrium in Binary Alkali Borate and Alkali Silicate Glasses,” Phys. Chem. Glasses 6, 212–215 (1965).
  14. H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
    [Crossref]
  15. V. Gottardi, G. Paoletti, and M. Tornati, “The ratio Ce3+/Ce4+ in the melting of different glasses and its influence on their properties,“ Advances in Glass Technology, VI International Congress in Glass, Washington D.C. 412–423 (1962).
  16. W. D. Johnston, “Oxidation-Reduction Equilibria in Molten Na2O 2SiO2 Glass,” J. Am. Ceram. Soc. 48(4), 184–190 (1965).
    [Crossref]
  17. A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
    [Crossref]
  18. J. Mendham, R. C. Denney, J. D. Barnes, and M. J. K. Thomas, Vogel's Quantitative Chemical Analysis (6th ed.), (Pearson Education Limited: Harlow, 2000).
  19. D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
    [Crossref]
  20. A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
    [Crossref]
  21. H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000).
    [Crossref]
  22. S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
    [Crossref]
  23. A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
    [Crossref]
  24. M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
    [Crossref]
  25. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
    [Crossref]
  26. P. Dorenbos, “Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity,” Phys. Rev. B 65(23), 2351101–2351106 (2002).
    [Crossref]
  27. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
    [Crossref]
  28. V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Tech. Met. 45, 219–250 (2010).
  29. N. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44(7), 3205–3208 (1973).
    [Crossref]
  30. R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
    [Crossref]
  31. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  32. A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
    [Crossref]
  33. G. A. Slack, S. L. Dole, V. Tsoukala, and G. S. Nolas, “Optical absorption spectrum of trivalent cerium in Y2O3, Ba2GdTaO6, ThO2, and related compounds,” J. Opt. Soc. Am. B 11(6), 961–974 (1994).
    [Crossref]

2014 (2)

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

2013 (4)

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

2011 (2)

H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

2010 (3)

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Tech. Met. 45, 219–250 (2010).

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

2009 (1)

A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
[Crossref]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

2002 (1)

P. Dorenbos, “Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity,” Phys. Rev. B 65(23), 2351101–2351106 (2002).
[Crossref]

2001 (2)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[Crossref]

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

2000 (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

1994 (1)

1993 (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

1980 (1)

H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
[Crossref]

1976 (1)

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

1973 (2)

N. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44(7), 3205–3208 (1973).
[Crossref]

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[Crossref]

1971 (1)

J. E. Ritter and C. L. Sherburne, “Dynamic and Static Fatigue of Silicate Glasses,” J. Am. Ceram. Soc. 54(12), 601–605 (1971).
[Crossref]

1965 (2)

W. D. Johnston, “Oxidation-Reduction Equilibria in Molten Na2O 2SiO2 Glass,” J. Am. Ceram. Soc. 48(4), 184–190 (1965).
[Crossref]

A. Paul and R. W. Douglas, “Cerous Ceric Equilibrium in Binary Alkali Borate and Alkali Silicate Glasses,” Phys. Chem. Glasses 6, 212–215 (1965).

1962 (1)

D. L. Dexter, “Cooperative optical absorption in solids,” Phys. Rev. 126(6), 1962–1967 (1962).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1949 (1)

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie,” Z. Naturforschung 4a, 321–327 (1949).

Bennett, N. R.

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

Brandily-Anne, M.-L.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Brenan, J. M.

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

Chen, J.

H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Dexter, D. L.

D. L. Dexter, “Cooperative optical absorption in solids,” Phys. Rev. 126(6), 1962–1967 (1962).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Dimitrov, V.

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Tech. Met. 45, 219–250 (2010).

Dole, S. L.

Dorenbos, P.

P. Dorenbos, “Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity,” Phys. Rev. B 65(23), 2351101–2351106 (2002).
[Crossref]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[Crossref]

Douglas, R. W.

A. Paul and R. W. Douglas, “Cerous Ceric Equilibrium in Binary Alkali Borate and Alkali Silicate Glasses,” Phys. Chem. Glasses 6, 212–215 (1965).

Duffy, J. A.

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

Efimov, A. M.

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Ehrt, D.

A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

Fibikar, S.

A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
[Crossref]

Förster, T.

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie,” Z. Naturforschung 4a, 321–327 (1949).

García, M. A.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

Glebov, L. B.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Glebova, L.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Guo, H.

H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Hein, J.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Henderson, G. S.

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

Herrmann, A.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
[Crossref]

Ignatev, A. I.

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Ignatiev, A. I.

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

Johnston, W. D.

W. D. Johnston, “Oxidation-Reduction Equilibria in Molten Na2O 2SiO2 Glass,” J. Am. Ceram. Soc. 48(4), 184–190 (1965).
[Crossref]

Kaluza, M. C.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Klöpfel, D.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Komatsu, T.

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Tech. Met. 45, 219–250 (2010).

Körner, J.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Kuhn, S.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

Lauer, H. V.

H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
[Crossref]

Li, Z.

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Llopis, J.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

Lumeau, J.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Mao, Y. L.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Meijerink, A.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Mulholland, M.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

Nikonorov, N. V.

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Nolas, G. S.

Paje, S. E.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

Paul, A.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

A. Paul and R. W. Douglas, “Cerous Ceric Equilibrium in Binary Alkali Borate and Alkali Silicate Glasses,” Phys. Chem. Glasses 6, 212–215 (1965).

Postnikov, E. S.

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Regier, T.

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

Reisfeld, R.

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[Crossref]

Ritter, J. E.

J. E. Ritter and C. L. Sherburne, “Dynamic and Static Fatigue of Silicate Glasses,” J. Am. Ceram. Soc. 54(12), 601–605 (1971).
[Crossref]

Rüssel, C.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Schreiber, H. D.

H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
[Crossref]

Seifert, R.

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

Sherburne, C. L.

J. E. Ritter and C. L. Sherburne, “Dynamic and Static Fatigue of Silicate Glasses,” J. Am. Ceram. Soc. 54(12), 601–605 (1971).
[Crossref]

Slack, G. A.

Smythe, D. J.

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

Thanyasiri, T.

H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
[Crossref]

Tiegel, M.

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

Tsoukala, V.

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Villegas, M. A.

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

Weber, N. J.

N. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44(7), 3205–3208 (1973).
[Crossref]

Zaman, M. S.

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

Zhang, F.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Zhang, H.

H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Zhang, Z. L.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Zhuang, Y.

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

Zou, S. F.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Geochim. Cosmochim. Acta (2)

H. D. Schreiber, H. V. Lauer, and T. Thanyasiri, “The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts,” Geochim. Cosmochim. Acta 44(10), 1599–1612 (1980).
[Crossref]

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

J. Alloy. Comp. (1)

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

J. Am. Ceram. Soc. (2)

W. D. Johnston, “Oxidation-Reduction Equilibria in Molten Na2O 2SiO2 Glass,” J. Am. Ceram. Soc. 48(4), 184–190 (1965).
[Crossref]

J. E. Ritter and C. L. Sherburne, “Dynamic and Static Fatigue of Silicate Glasses,” J. Am. Ceram. Soc. 54(12), 601–605 (1971).
[Crossref]

J. Appl. Phys. (1)

N. J. Weber, “Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3,” J. Appl. Phys. 44(7), 3205–3208 (1973).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Mater. Chem. C (2)

M. Tiegel, A. Herrmann, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems,” J. Mater. Chem. C 1(33), 5031–5039 (2013).
[Crossref]

A. Herrmann, S. Kuhn, M. Tiegel, C. Rüssel, J. Körner, D. Klöpfel, J. Hein, and M. C. Kaluza, “Structure and Fluorescence Properties of Ternary Alumino Silicate Glasses doped with Samarium and Europium,” J. Mater. Chem. C 2(21), 4328–4337 (2014).
[Crossref]

J. Mater. Sci. (1)

A. Paul, M. Mulholland, and M. S. Zaman, “Ultraviolet absorption of cerium(Ill) and cerium(IV) in some simple glasses,” J. Mater. Sci. 11(11), 2082–2086 (1976).
[Crossref]

J. Non-Cryst. Solids (4)

A. Herrmann, S. Fibikar, and D. Ehrt, “Time-resolved fluorescence measurements on Eu3+- and Eu2+-doped glasses,” J. Non-Cryst. Solids 355(43-44), 2093–2101 (2009).
[Crossref]

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Specific absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

D. J. Smythe, J. M. Brenan, N. R. Bennett, T. Regier, and G. S. Henderson, “Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES,” J. Non-Cryst. Solids 378, 258–264 (2013).
[Crossref]

A. M. Efimov, N. V. Nikonorov, A. I. Ignatiev, and E. S. Postnikov, “Quantitative UV–VIS spectroscopic studies of photo-thermo-refractive glasses. II. Manifestations of Ce3+ and Ce(IV) valence states in the UV absorption spectrum of cerium-doped photo-thermo-refractive matrix glasses,” J. Non-Cryst. Solids 361, 26–37 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Rare Earths (1)

H. Zhang, J. Chen, and H. Guo, “Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors,” J. Rare Earths 29(9), 822–825 (2011).
[Crossref]

J. Univ. Chem. Tech. Met. (1)

V. Dimitrov and T. Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Tech. Met. 45, 219–250 (2010).

Laser Phys. Lett. (1)

M. Tiegel, A. Herrmann, S. Kuhn, C. Rüssel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications,” Laser Phys. Lett. 11(11), 115811 (2014).
[Crossref]

Opt. Mater. (3)

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000).
[Crossref]

S. E. Paje, M. A. García, M. A. Villegas, and J. Llopis, “Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties,” Opt. Mater. 17(4), 459–469 (2001).
[Crossref]

Opt. Spectrosc. (1)

A. M. Efimov, A. I. Ignatev, N. V. Nikonorov, and E. S. Postnikov, “Spectral components that form UV absorption spectrum of Ce3+ and Ce(IV) valence states in matrix of photothermorefractive glasses,” Opt. Spectrosc. 111(3), 426–433 (2011).
[Crossref]

Phys. Chem. Glasses (1)

A. Paul and R. W. Douglas, “Cerous Ceric Equilibrium in Binary Alkali Borate and Alkali Silicate Glasses,” Phys. Chem. Glasses 6, 212–215 (1965).

Phys. Rev. (1)

D. L. Dexter, “Cooperative optical absorption in solids,” Phys. Rev. 126(6), 1962–1967 (1962).
[Crossref]

Phys. Rev. B (3)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 0141901 (2005).
[Crossref]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[Crossref]

P. Dorenbos, “Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity,” Phys. Rev. B 65(23), 2351101–2351106 (2002).
[Crossref]

Structure and Bonding (1)

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[Crossref]

Z. Naturforschung (1)

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie,” Z. Naturforschung 4a, 321–327 (1949).

Other (4)

H. Scholze, Glass - Nature, Structure, and Properties (New York, 1991).

J. Mendham, R. C. Denney, J. D. Barnes, and M. J. K. Thomas, Vogel's Quantitative Chemical Analysis (6th ed.), (Pearson Education Limited: Harlow, 2000).

V. Gottardi, G. Paoletti, and M. Tornati, “The ratio Ce3+/Ce4+ in the melting of different glasses and its influence on their properties,“ Advances in Glass Technology, VI International Congress in Glass, Washington D.C. 412–423 (1962).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Ce3+ excitation (left) and emission spectra (right) of various cerium doped aluminosilicate glasses of relatively high optical basicity. The grey short-dashed curve is the Yb3+ absorption spectrum in the MgAS2020 glass at doubled energy.
Fig. 2
Fig. 2 Excitation (left) and emission spectra (right) of barium aluminosilicate glasses doped with 1·1019 cerium ions/cm3 prepared under different melting conditions a) unreduced, b) reduced by Ar bubbling, c) reduced by Ar bubbling in Ar atmosphere, and d) reduced by adding aluminum powder to the batch.
Fig. 3
Fig. 3 UV-VIS absorption spectra of cerium doped BaAS3510 glasses (1·1019 ions per cm3) prepared using reducing, non-reducing and oxidizing melting conditions. The spectra of the undoped samples (not shown) have been subtracted from the respective spectra of the cerium doped samples.
Fig. 4
Fig. 4 An oxidized (oxygen bubbling, left) and a reduced BaAS3510 sample (argon bubbling, right). Sample thickness 1 cm, sample size about 2 × 3 cm. Overall cerium doping concentration 1·1019 ions per cm3. The oxidized sample clearly shows a yellow/brownish coloring.
Fig. 5
Fig. 5 Example of deconvolution of the optical absorption spectrum of a cerium doped BaAS3510 sample (1·1019 ions per cm3) melted under reducing conditions. All five peaks are attributed to Ce3+.
Fig. 6
Fig. 6 Example of deconvolution of the optical absorption spectrum of a cerium doped BaAS3510 sample (1·1019 ions per cm3) melted under not reducing conditions. The five short-dashed grey peaks are attributed to Ce3+ (see Fig. 5), while the two long-dashed black peaks represent the two-band Ce4+ absorption.
Fig. 7
Fig. 7 Example of deconvolution of the optical absorption spectrum of a cerium doped BaAS3510 sample (1·1019 ions per cm3) melted under oxidizing conditions. The five short-dashed grey peaks are attributed to Ce3+ (see Fig. 5), while the two long-dashed black peaks represent the two-band Ce4+ absorption.
Fig. 8
Fig. 8 Ce3+ excitation (left) and emission spectra (right) of BaAS3510 glasses with different cerium concentrations between 5·1018 and 5·1020 cm−3.

Tables (2)

Tables Icon

Table 1 The compositions of all studied samples, their densities and calculated optical basicities (after: [28 and references therein]).

Tables Icon

Table 2 Calculated molar extinction coefficients of Ce3+/4+ at the respective peak absorption wavelengths in barium aluminosilicate glasses melted under different conditions

Metrics