Abstract

We report a facile metal transfer method to create metal patterns on polydimethylsiloxane (PDMS) surface. The metals were first patterned on polyethylene terephthalate (PET) substrate, and then transferred to PDMS simply by oxygen plasma treatment. The transfer was enabled by weakened metal-PET adhesion due to undercut and charge repulsion. In this way, we got rid of adhesion layers and sacrificial layers that were required by conventional methods. Ours is a fast and convenient method as it takes place at room temperature with just a gentle contact of PET and PDMS. The resolution of this method was found to be in sub-micron range and the morphologies of different transferred patterns were characterized. With such a method, we successfully fabricated some unconventional metamaterial devices, including a double-sided broadband THz filter with a stop band bandwidth of 1.4 THz, and devices on paper, fabric, leaf and non-planar surfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss flexible bilayer metamaterials in THz regime

Jeong Min Woo, Dongju Kim, Sajid Hussain, and Jae-Hyung Jang
Opt. Express 22(3) 2289-2298 (2014)

Highly flexible near-infrared metamaterials

G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, and K. W. Cheah
Opt. Express 20(1) 397-402 (2012)

“Pattern and Peel” method for fabricating mechanically tunable terahertz metasurface on an elastomeric substrate

S. C. Ambhire, S. Palkhivala, A. Agrawal, A. Gupta, G. Rana, R. Mehta, D. Ghindani, A. Bhattacharya, V. G. Achanta, and S. S. Prabhu
Opt. Mater. Express 8(11) 3382-3391 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
    [Crossref] [PubMed]
  2. J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
    [Crossref]
  3. M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
    [Crossref] [PubMed]
  4. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
    [Crossref] [PubMed]
  5. Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
    [Crossref]
  6. J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
    [Crossref]
  7. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  9. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  10. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  11. Y. S. Lin and C. Lee, “Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers,” Appl. Phys. Lett. 104(25), 251914 (2014).
    [Crossref]
  12. F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
    [Crossref]
  13. P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
    [Crossref]
  14. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  15. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
    [Crossref] [PubMed]
  16. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  17. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
    [Crossref] [PubMed]
  18. C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
    [Crossref] [PubMed]
  19. R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, “Perfect absorbers on curved surfaces and their potential applications,” Opt. Express 20(16), 18370–18376 (2012).
    [Crossref] [PubMed]
  20. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(23), 4988–4990 (2013).
    [Crossref] [PubMed]
  21. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
    [Crossref]
  22. H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
    [Crossref]
  23. J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
    [Crossref]
  24. T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
    [Crossref]
  25. Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
    [Crossref]
  26. I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
    [Crossref]
  27. K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
    [Crossref] [PubMed]
  28. B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
    [Crossref]
  29. M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
    [Crossref] [PubMed]
  30. D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
    [Crossref]
  31. O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
    [Crossref] [PubMed]
  32. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  33. M. Zhu, Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117581, Y. S. Lin, L. Ke, and C. Lee, are preparing a manuscript to be called “A split-ring-resonator-based polarization-insensitive broadband filter in terahertz frequency range.”
  34. F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
    [Crossref]
  35. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
    [Crossref]
  36. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
    [Crossref] [PubMed]
  37. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
    [Crossref] [PubMed]

2015 (1)

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

2014 (3)

Y. S. Lin and C. Lee, “Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers,” Appl. Phys. Lett. 104(25), 251914 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

2013 (5)

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
[Crossref] [PubMed]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(23), 4988–4990 (2013).
[Crossref] [PubMed]

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
[Crossref]

2012 (3)

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

R. Alaee, C. Menzel, C. Rockstuhl, and F. Lederer, “Perfect absorbers on curved surfaces and their potential applications,” Opt. Express 20(16), 18370–18376 (2012).
[Crossref] [PubMed]

2011 (2)

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

2010 (6)

O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
[Crossref] [PubMed]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

2009 (5)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

2008 (1)

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

2007 (1)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

2006 (1)

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

2003 (2)

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

2002 (1)

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1997 (1)

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Adeyeye, A. O.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

Ahn, J.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Aida, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Aksu, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Alaee, R.

Allenspach, R.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Altug, H.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Artar, A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Baldwin, K. W.

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Bao, Z.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Barman, S.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Bashir, R.

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Bergveld, P.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Brener, I.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Burckel, D. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Byun, I.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
[Crossref]

Carlson, A.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

Chang, W. J.

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

Chen, C. V. H.-H.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Cheng, H.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Choi, W. K.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
[Crossref] [PubMed]

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Chong, C. T.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Coleman, A. W.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
[Crossref]

Dawood, M. K.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

de Miollis, F.

Delamarche, E.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Dokmeci, M. R.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Ellis, A. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Fujita, H.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

Fukushima, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Ginn, J. C.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Görrn, P.

O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
[Crossref] [PubMed]

Graudejus, O.

O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
[Crossref] [PubMed]

Guillet, J. P.

Han, Y.

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Hangyo, M.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Hata, K.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Ho, C. P.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Holden, A.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hong, S. H.

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

Huang, C.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Huang, M.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Huang, Y.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Huang, Y. Y.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Hwang, K.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Karg, S.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Khodasevych, I. E.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Kim, B.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
[Crossref]

Kim, B. J.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

Kim, D.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Kim, H.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Kim, J. G.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

Kim, J. W.

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

Kim, T.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Kim, Y.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Koo, Y. M.

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kropelnicki, P.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Kuboda, S.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Lai, C. Q.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Lederer, F.

Lee, C.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

Y. S. Lin and C. Lee, “Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers,” Appl. Phys. Lett. 104(25), 251914 (2014).
[Crossref]

Lee, H.

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

Leong, K. C.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Li, B.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
[Crossref] [PubMed]

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Lim, K. S.

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

Lin, H.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Lin, Y.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Lin, Y. S.

Y. S. Lin and C. Lee, “Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers,” Appl. Phys. Lett. 104(25), 251914 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, X.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

Liu, Z.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Loo, Y. L.

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Lötters, J. C.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

Ma, F.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

Maeda, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Mannsfeld, S. C. B.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Menzel, C.

Michel, B.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Minghui, H.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Miyamaru, F.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Mounaix, P.

Muir, B. V. O.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Nakajima, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Olthuis, W.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Pitchappa, P.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Rahmani, M.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Rajagopalan, R.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Reese, C.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Riel, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Robbins, D.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

Rogers, J. A.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Rowe, W. S. T.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Schmid, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sekitani, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Selvarasah, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sinclair, M. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Singh, N.

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sokolov, A. N.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Someya, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Song, J.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Stewart, W.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Stoltenberg, R. M.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Taima, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Takama, N.

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

Takano, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Takeda, M. W.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Tee, B. C.-K.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Ten Eyck, G. A.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Too, H. P.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Ung, B. S. Y.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Ung, B. S.-Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

Veltink, P. H.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Wagner, S.

O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
[Crossref] [PubMed]

Wan, G.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Wang, S.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Wang, Z.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wendt, J. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

Willett, R. L.

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Withayachumnankul, W.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Flexible terahertz metamaterials for dual-axis strain sensing,” Opt. Lett. 38(12), 2104–2106 (2013).
[Crossref] [PubMed]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

Wolf, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Won, S. M.

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Wu, J.

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Xing, R.

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Yahiaoui, R.

Yan, D.

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Yandong, G.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Yang, K. Y.

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

Yanik, A. A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yuan, J.

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Zaichun, C.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Zhang, J.

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

Zhang, X.

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, L.

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Zhu, M.

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
[Crossref] [PubMed]

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

O. Graudejus, P. Görrn, and S. Wagner, “Controlling the morphology of gold films on poly(dimethylsiloxane),” ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[Crossref]

Adv. Mater. (6)

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography,” Adv. Mater. 22(29), 3171–3175 (2010).
[Crossref] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,” Adv. Mater. 22(44), 5053–5057 (2010).
[Crossref] [PubMed]

Z. Wang, J. Yuan, J. Zhang, R. Xing, D. Yan, and Y. Han, “Metal transfer printing and its application in organic field-effect transistor fabrication,” Adv. Mater. 15(12), 1009–1012 (2003).
[Crossref]

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of Variable Three-Dimensional Terahertz Metamaterial Tubes for Passive Resonance Tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

D. Kim, Y. Kim, J. Wu, Z. Liu, J. Song, H. Kim, Y. Y. Huang, K. Hwang, and J. A. Rogers, “Ultrathin Silicon Circuits With Strain-Isolation Layers and Mesh Layouts for High-Performance Electronics on Fabric, Vinyl, Leather, and Paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Appl. Phys. Express (1)

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Appl. Phys. Lett. (7)

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100(6), 061101 (2012).
[Crossref]

T. Kim, A. Carlson, J. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, “Kinetically controlled, adhesiveless transfer printing using microstructured stamps,” Appl. Phys. Lett. 94(11), 113502 (2009).
[Crossref]

Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Y. S. Lin and C. Lee, “Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers,” Appl. Phys. Lett. 104(25), 251914 (2014).
[Crossref]

P. Pitchappa, C. P. Ho, Y. Lin, P. Kropelnicki, C. Huang, N. Singh, and C. Lee, “Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance,” Appl. Phys. Lett. 104(15), 151104 (2014).
[Crossref]

Appl. Surf. Sci. (1)

J. W. Kim, K. Y. Yang, S. H. Hong, and H. Lee, “Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method,” Appl. Surf. Sci. 254(17), 5607–5611 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Micromech. Microeng. (3)

J. G. Kim, N. Takama, B. J. Kim, and H. Fujita, “Optical-softlithographic technology for patterning on curved surfaces,” J. Micromech. Microeng. 19(5), 055017 (2009).
[Crossref]

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[Crossref]

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive,” J. Micromech. Microeng. 23(8), 085016 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (2)

B. Li, X. Liu, M. Zhu, Z. Wang, A. O. Adeyeye, and W. K. Choi, “Synthesis and Characterization of Cobalt/Palladium Multilayer Film and Nanodiscs on Polyethylene Terephthalate Substrate,” J. Nanosci. Nanotechnol. 15(6), 4332–4338 (2015).
[Crossref]

M. Zhu, B. Li, and W. K. Choi, “Fabrication of Nanostructures on Polyethylene Terephthalate Substrate by Interference Lithography and Plasma Etching,” J. Nanosci. Nanotechnol. 13(8), 5474–5480 (2013).
[Crossref] [PubMed]

Lab Chip (1)

K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization,” Lab Chip 6(4), 578–580 (2006).
[Crossref] [PubMed]

Light. Science and Applications (1)

F. Ma, Y. S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light. Science and Applications 3(5), e171 (2014).
[Crossref]

Nano Lett. (1)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Nanoscale (1)

M. Zhu, L. Zhou, B. Li, M. K. Dawood, G. Wan, C. Q. Lai, H. Cheng, K. C. Leong, R. Rajagopalan, H. P. Too, and W. K. Choi, “Creation of nanostructures by interference lithography for modulation of cell behavior,” Nanoscale 3(7), 2723–2729 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9(10), 859–864 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Other (1)

M. Zhu, Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117581, Y. S. Lin, L. Ke, and C. Lee, are preparing a manuscript to be called “A split-ring-resonator-based polarization-insensitive broadband filter in terahertz frequency range.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Process flow of the metal transfer method; (b) and (c) are microscopic images of an Al horseshoe pattern array patterned on PET and after transferred to PDMS. The scale bars in both images are 50 μm.
Fig. 2
Fig. 2 Microscopic images of gold metal patterns transferred onto PDMS surfaces, namely, (a) discrete SRR pattern of 200 nm thick, (b) CSRR pattern of 200 nm thick, (c) nanodot array of 30 nm thick and (d) Au film with nanohole array of 80 nm thick.
Fig. 3
Fig. 3 Microscopic image of 80 nm-thick Al film with nanoholes transferred onto PDMS substrate with an inset of its SEM image. The scale bar in the inset is 2 μm.
Fig. 4
Fig. 4 (a) Illustration of the unit cell of the PET device; (b) illustration of the unit cell of the double-sided PDMS; and normalized transmission spectra of (c) single-sided PET device before transfer and (d) double-sided PDMS device after transfer with 0°- and 90°-polarized incidence. The insets in (c) and (d) are the microscopic images of both devices. The scale bars are both 100 μm.
Fig. 5
Fig. 5 (a) Metamaterial patterns transferred onto various substrates including fabric, paper and a leaf. (b) to (d) are microscopic images of the patterns on fabric, paper and leaf, respectively. (e) presents the spectra of devices on paper and fabric as well as that of a PET substrate (before transfer) and a PDMS substrate (after transfer). All devices in (e) have the same metal pattern. The scale bars in (b) to (d) are all 100 μm.
Fig. 6
Fig. 6 (a) Optical image of non-planar metamaterial devices with metal patterns fabricated on a PDMS cone, a cylinder and a cube; and (b) microscopic image of the cylindrical metamaterial. The scale bars in (a) and (b) are 1 cm and 50 μm, respectively.

Metrics