Abstract

Nd3+ and Yb3+ doped BaGd2ZnO5 phosphors were synthesized via high temperature solid-state method. The composition and structure have been investigated by the X-ray powder diffraction. The near-infrared quantum cutting for BaGd2ZnO5: Nd3+, Yb3+ is proved by the visible and near-infrared excitation, emission spectra and decay curves. Upon 359 nm excitation, visible and near-infrared emission of Nd3+ decrease with Yb3+ concentration increasing, and the intensities of 978 nm near-infrared emission of Yb3+ increase firstly and then decrease because of concentration quenching. The corresponding quantum cutting mechanism has been discussed through the energy level diagram. The maximum energy transfer efficiency calculated approaches 31.9%. Furthermore, the quenching concentration of Yb3+ is 7%. This study has prospect to be applied in the silicon-based solar cells to progress the conversion efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+

Zhiguo Xia, Yi Luo, Ming Guan, and Libing Liao
Opt. Express 20(S5) A722-A728 (2012)

Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Efficient near-infrared down-conversion in KCaGd(PO4)2:Ce3+,Yb3+

Lei Zhao, Lili Han, and Yuhua Wang
Opt. Mater. Express 4(7) 1456-1464 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [Crossref] [PubMed]
  3. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [Crossref]
  4. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
    [Crossref] [PubMed]
  5. Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
    [Crossref]
  6. M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
    [Crossref]
  7. V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
    [Crossref]
  8. S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
    [Crossref]
  9. B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
    [Crossref]
  10. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
    [Crossref]
  11. H. Lin, D. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett. 36(6), 876–878 (2011).
    [Crossref] [PubMed]
  12. L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
    [Crossref] [PubMed]
  13. Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
    [Crossref]
  14. W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
    [Crossref]
  15. S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
    [Crossref]
  16. W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce³⁺ ions on NIR quantum cutting process in Y₂SiO₅: Ce³⁺, Yb³⁺,” Opt. Express 20(S4Suppl 4), A510–A518 (2012).
    [Crossref] [PubMed]
  17. Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
    [Crossref]
  18. Y. Dwivedi and S. B. Rai, “Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass,” Opt. Mater. 31(10), 1472–1477 (2009).
    [Crossref]
  19. Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
    [Crossref]
  20. I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
    [Crossref]
  21. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [Crossref]
  22. Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
    [Crossref]
  23. J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
    [Crossref]
  24. K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
    [Crossref]
  25. Z. G. Xia, Y. Luo, M. Guan, and L. B. Liao, “Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/ Yb3+,” Opt. Express 20(S5Suppl 5), A722–A728 (2012).
    [Crossref] [PubMed]
  26. Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
    [Crossref]
  27. B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
    [Crossref]
  28. B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
    [Crossref]
  29. J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
    [Crossref]
  30. J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
    [Crossref]
  31. S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
    [Crossref]
  32. Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
    [Crossref]

2014 (1)

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

2013 (5)

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

2012 (9)

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, and H. B. Liang, “Study on the effects of 5d energy locations of Ce³⁺ ions on NIR quantum cutting process in Y₂SiO₅: Ce³⁺, Yb³⁺,” Opt. Express 20(S4Suppl 4), A510–A518 (2012).
[Crossref] [PubMed]

Z. G. Xia, Y. Luo, M. Guan, and L. B. Liao, “Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/ Yb3+,” Opt. Express 20(S5Suppl 5), A722–A728 (2012).
[Crossref] [PubMed]

2011 (4)

H. Lin, D. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett. 36(6), 876–878 (2011).
[Crossref] [PubMed]

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

2010 (5)

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
[Crossref]

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

2009 (3)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Y. Dwivedi and S. B. Rai, “Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass,” Opt. Mater. 31(10), 1472–1477 (2009).
[Crossref]

Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
[Crossref]

2008 (2)

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

2007 (1)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

2001 (1)

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

An, Y. T.

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Aydil, E. S.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Cai, S. Z.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Cao, W.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Cardin, J.

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Chen, B.

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Chen, B. J.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Chen, D.

Chen, D. P.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Chen, G.

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

Chen, G. R.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Chen, J. D.

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Chen, X. Y.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Chen, Y.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Cheng, J. M.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Cheng, L. H.

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Chlique, C.

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

Conanec, O. M.

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

del-Castillo, J.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Deng, K.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Ding, J. W.

S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
[Crossref]

Dong, P. Y.

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Du, H.

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

Duan, Q. Q.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Dwivedi, Y.

Y. Dwivedi and S. B. Rai, “Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass,” Opt. Mater. 31(10), 1472–1477 (2009).
[Crossref]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Fan, B.

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

Fan, X. P.

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

Gourbilleau, F.

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Guan, M.

Güdel, H. U.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Guo, H.

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

Guo, L. N.

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Hua, R. N.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Jiao, F. Y.

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Jiao, J. P.

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Kirilenko, D.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Krämer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Kuang, X. J.

Labbé, C.

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Li, F.

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

Li, M. M.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Li, R. F.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Li, X. D.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Li, X. P.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Li, Y.

Li, Z. Q.

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Liang, H. B.

Liao, L. B.

Lin, H.

Liu, L. L.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Liu, X. F.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Liu, Y. F.

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Liu, Y. S.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Liu, Y. Z.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Luo, J.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Luo, W. Q.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Luo, Y.

Mao, Y. L.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Martin, D. J.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Martín, I. R.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

Martucci, A.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Meijerink, A.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Méndez-Ramos, J.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

Mi, C.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Morales, M.

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Morrow, I.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Mos, M.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Moshchalkov, V. V.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Negro, A. D.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Norris, D. J.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Padovani, S.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Peng, Y.

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Prèa, M. D.

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Qin, F.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Qiu, J. R.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Rai, S. B.

Y. Dwivedi and S. B. Rai, “Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass,” Opt. Mater. 31(10), 1472–1477 (2009).
[Crossref]

Ren, J.

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

Rodríguez, V. D.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Su, H. X.

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Sun, J.

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Sun, J. S.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Sun, Y.

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

Tang, J. K.

Teng, Y.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Tian, B.

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Tian, B. N.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Tian, Y.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Tikhomirov, V. K.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Timp, B. A.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Tisdale, W. A.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tong, Y.

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

Torres, M. E.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

Tu, D. T.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

Van Tendeloo, G.

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

van Wijngaarden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Vrcek, V. S.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Wang, C.

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Wang, D.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Wang, J.

Wang, X.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Wang, Y.

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Wang, Y. H.

Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
[Crossref]

Wang, Y. S.

Wang, Y. Z.

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Wei, X.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Williams, K. J.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Wu, Z. L.

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Xia, Z. G.

Xiao, S.

S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
[Crossref]

Xie, L. C.

Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
[Crossref]

Xu, W.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Yan, Q.

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

Yanes, A. C.

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

Yang, A. P.

Yang, J.

Yang, X.

S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
[Crossref]

Yang, Y. M.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Ye, S.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Yin, M.

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Yu, F.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Yu, Y. L.

Zeng, J.

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

Zhang, F.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Zhang, G.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Zhang, H.

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

Zhang, H. J.

Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
[Crossref]

Zhang, J.

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Zhang, J. S.

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Zhang, Q.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Zhang, X. H.

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

Zhang, X. Q.

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Zhang, Z.

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

Zhang, Z. L.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Zheng, W.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Zhong, H. Y.

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Zhou, J. J.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Zhou, W. L.

Zhu, B.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

Zhu, H. M.

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Zhu, X. Y.

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Zhuang, Y. X.

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Zou, S. F.

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

Adv. Optical Mater. (1)

Y. T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Optical Mater. 1(11), 855–862 (2013).
[Crossref]

Appl. Phys. B (2)

S. Xiao, X. Yang, and J. W. Ding, “Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting,” Appl. Phys. B 99(4), 769–773 (2010).
[Crossref]

K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B 102(3), 555–558 (2011).
[Crossref]

Appl. Phys. Lett. (2)

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[Crossref]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[Crossref]

Ceram. Int. (1)

B. Tian, B. Chen, Y. Tian, J. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, Z. L. Wu, and R. N. Hua, “Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor,” Ceram. Int. 38(5), 3537–3540 (2012).
[Crossref]

Chem. Phys. Lett. (1)

J. J. Zhou, Y. Teng, S. Ye, Y. X. Zhuang, and J. R. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett. 486(4-6), 116–118 (2010).
[Crossref]

Chin. J. Lumin. (2)

S. Z. Cai, L. L. Liu, M. M. Li, F. Yu, C. Mi, X. D. Li, J. Zhang, Y. Z. Liu, and Y. M. Yang, “Synthesis and down-conversion luminescence study of Er3+, Yb3+ co-doped NaYF4 phosphors,” Chin. J. Lumin. 35(9), 1058–1064 (2014).
[Crossref]

Y. M. Yang, F. Y. Jiao, H. X. Su, Z. Q. Li, J. P. Jiao, Y. F. Liu, and Z. Q. Li, “Synthesis and up-conversion luminescence efficiency of Yb3+, Er3+ co-doped BaGd2ZnO5 Phosphors,” Chin. J. Lumin. 33, 1319–1323 (2012).
[Crossref]

J. Alloy. Comp. (1)

S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, “High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses,” J. Alloy. Comp. 572, 110–112 (2013).
[Crossref]

J. Am. Ceram. Soc. (2)

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum Cutting in Tm3+/Yb3+-Codoped Lanthanum Aluminum Germanate Glasses,” J. Am. Ceram. Soc. 93(3), 654–657 (2010).
[Crossref]

Q. Yan, J. Ren, Y. Tong, and G. Chen, “Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses,” J. Am. Ceram. Soc. 96(5), 1349–1351 (2013).
[Crossref]

J. Appl. Phys. (4)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Y. H. Wang, L. C. Xie, and H. J. Zhang, “Cooperative near-infrared quantum cutting in Tb3+, Yb3+ codoped polyborates La0.99−xYbxBaB9O16:Tb0.01,” J. Appl. Phys. 105, 023528 (2009).
[Crossref]

Q. Q. Duan, F. Qin, D. Wang, W. Xu, J. M. Cheng, Z. Zhang, and W. Cao, “Quantum cutting mechanism in Tb3+-Yb3+ co-doped oxyfluoride glass,” J. Appl. Phys. 110(11), 113503 (2011).
[Crossref]

I. R. Martín, A. C. Yanes, J. Méndez-Ramos, M. E. Torres, and V. D. Rodríguez, “Cooperative energy transfer in Yb3+–Tb3+ codoped silica sol-gel glasses,” J. Appl. Phys. 89(5), 2520 (2001).
[Crossref]

J. Phys. Chem. C (1)

B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100%,” J. Phys. Chem. C 116(21), 11652–11657 (2012).
[Crossref]

J. Phys. Chem. Solids (1)

B. N. Tian, B. J. Chen, Y. Tian, J. S. Sun, X. P. Li, J. S. Zhang, H. Y. Zhong, L. H. Cheng, and R. N. Hua, “Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors,” J. Phys. Chem. Solids 73(11), 1314–1319 (2012).
[Crossref]

Mater. Chem. Phys. (2)

J. D. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys. 128(1-2), 191–194 (2011).
[Crossref]

M. D. Prèa, I. Morrow, D. J. Martin, M. Mos, A. D. Negro, S. Padovani, and A. Martucci, “Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency,” Mater. Chem. Phys. 139(2-3), 531–536 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

L. N. Guo, Y. Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, “Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers,” Nanoscale Res. Lett. 7(1), 636 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (3)

J. Sun, Y. Sun, J. Zeng, and H. Du, “Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor,” Opt. Mater. 35(6), 1276–1278 (2013).
[Crossref]

Y. M. Yang, B. J. Chen, C. Wang, H. Y. Zhong, L. H. Cheng, J. S. Sun, Y. Peng, and X. Q. Zhang, “Investigation on structure and optical properties of Er3+, Eu3+ single-doped Na2O–ZnO–B2O3–TeO2 glasses,” Opt. Mater. 31(2), 445–450 (2008).
[Crossref]

Y. Dwivedi and S. B. Rai, “Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass,” Opt. Mater. 31(10), 1472–1477 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (2)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[Crossref] [PubMed]

W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors,” Phys. Chem. Chem. Phys. 14(19), 6974–7180 (2012).
[Crossref]

Science (1)

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328(5985), 1543–1547 (2010).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. S. Vrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence,” Sol. Energy Mater. Sol. Cells 100, 209–215 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (A) XRD patterns of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 7, 10) and standard card data (JCPDS No.49-0518); (B) the crystal structure of BaGd2ZnO5 seen from the c axis.
Fig. 2
Fig. 2 Visible light photoluminescence of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 5, 7, 10): (A) excitation spectra (λem = 423 nm); (B) emission spectra (λex = 359 nm); inset is the varying of emission peak intensity of 423 nm and 457 nm with Yb3+ concentration.
Fig. 3
Fig. 3 Near-infrared photoluminescence of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 5, 7, 10): (A) excitation spectra (λem = 978 nm), inset shows the excitation peaks intensities varying with Yb3+ concentrations; (B) emission spectra (λex = 359 nm); inset is the relation between emission peak intensity of 423 nm and 457 nm and Yb3+ concentration.
Fig. 4
Fig. 4 The energy level diagram of Nd3+ and Yb3+ and the ET mechanism between them.
Fig. 5
Fig. 5 Luminescence decay curves of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 5, 7, 10) (λex = 359 nm, λem = 423 nm), the inset is the lifetime varying process upon Yb3+ concentration.
Fig. 6
Fig. 6 Luminescence decay curves of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 5, 7, 10) (λex = 359 nm, λem = 457nm).

Tables (1)

Tables Icon

Table 1 Lifetime (τ), energy transfer efficiency (ηET) and quantum efficiency (ηQE) of BaGd2ZnO5: 1%Nd3+, x%Yb3+ (x = 0, 1, 3, 5, 7, 10) (λex = 359 nm, λem = 423 nm).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 2 1 / 2 ( N d 3 + ) + 2 F 2 7 / 2 ( Y b 3 + ) I 4 9 / 2 ( N d 3 + ) + 2 F 2 5 / 2 ( Y b 3 + )
2 F 2 5 / 2 ( Y b 3 + ) 2 F 2 7 / 2 ( Y b 3 + )
τ = + I ( t ) I 0 d t
η E T = 1 τ x % Y b 3 + τ 0 Y b 3 +
η Q E = η N d β ( 1 η E T ) + 2 η Y b η E T

Metrics