Abstract

A highly ultraviolet (UV)-resistant dopant 3HBBTfV consisting of an α-trifluomethyl vinylbenzene (TfV) moiety was synthesized and mixed with a commercial LC host (A) to promote its dielectric anisotropy in LC mixture C (A:3HBBTfV = 9:1 w/w). Their electric-optical properties were studied and compared with those of an analogous commercial LC mixture B composed of LC mixture A (as a commercial host) mixed with the same weight ratio (10% wt.) of a commercial component 3HBEBTf containing a 3,4,5-trifluorobenzene (BTf) moiety. The electro-optical properties of voltage holding ratio (VHR) values and voltage-transmission (V-T) curves of LC mixture C were sustained after the UV irradiation. These results showed that dopant 3HBBTfV (acting as an UV stabilizer) demonstrated a higher stability under UV exposure in contrast to commercial component 3HBEBTf. Therefore, LC mixture C (containing UV-resistant dopant 3HBBTfV) exhibited good UV resistance, high dielectric anisotropy, and excellent electro-optical properties.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of methyl red as a dopant on the electrical properties and device performance of liquid crystals

Po-Chang Wu, Chien-Tsung Hou, Yu-Cheng Hsiao, and Wei Lee
Opt. Express 22(25) 31347-31355 (2014)

Enhancement of electro-optical properties of twisted nematic liquid crystals by doping aromatic hydrocarbon liquids

Yen-Te Chiang, Tsu-Ruey Chou, and Chih-Yu Chao
Opt. Express 22(25) 30882-30888 (2014)

Fast-response liquid crystal phase modulators for augmented reality displays

Yuge Huang, Ziqian He, and Shin-Tson Wu
Opt. Express 25(26) 32757-32766 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
    [Crossref]
  2. H. Nam and S. W. Lee, “Low-power liquid crystal display television panel with reduced motion blur,” IEEE Trans. Consum. Electron. 56(2), 307–311 (2010).
    [Crossref]
  3. P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
    [Crossref] [PubMed]
  4. S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
    [Crossref] [PubMed]
  5. S. Y. Lu and L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
    [Crossref] [PubMed]
  6. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  7. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  8. K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).
  9. I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
    [Crossref]
  10. T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011).
    [Crossref]
  11. Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
    [Crossref]
  12. I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
    [Crossref] [PubMed]
  13. Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
    [Crossref]
  14. Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
    [Crossref]
  15. M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Displays 13(1), 11–34 (1992).
    [Crossref]
  16. M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
    [Crossref]
  17. P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
    [Crossref]
  18. Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
    [Crossref]
  19. L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
    [Crossref]
  20. C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
    [Crossref]
  21. S. Saito and H. Yamamoto, “Transient behavior of field-induced reorientation in variously oriented nematic liquid crystals,” Jpn. J. Appl. Phys. 17(2), 395–406 (1978).
    [Crossref]
  22. K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
    [Crossref]
  23. P. Kirsch and M. Bremer, “Nematic liquid crystal for active matrix displays: Molecular design and synthesis,” Angew. Chem. Int. Ed. 39(23), 4216–4235 (2000).
    [Crossref]
  24. D. Pauluth and K. Tarumi, “Advanced liquid crystals for television,” J. Mater. Chem. 14(8), 1219–1227 (2004).
    [Crossref]
  25. M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
    [Crossref] [PubMed]
  26. M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
    [Crossref] [PubMed]
  27. I. K. Huh and Y. B. Kim, “New low viscosity liquid crystal compounds containing the 2,3,4-trifluorophenyl moiety for active matrix displays,” Liq. Cryst. 29(10), 1265–1273 (2002).
    [Crossref]
  28. K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
    [Crossref]
  29. A. C. Chen, P. C. Huang, S. H. Liu, and K. L. Cheng, “Novel LC materials toward the faster response time and lower driving voltage,” In Proceedings of the 14th International Display Workshops (IDW ’07)1–3, 383–386 (2007).
  30. Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
    [Crossref]
  31. Y. Kubo, F. Takeshita, T. Matsushita, E. Nakagawa, and T. Kondo, “Liquid crystal composition and liquid crystal display device,” European Patent 0, 832, 955 (April 1, 1998).
  32. K. Miyazawa, T. Kato, Y. Kubo, and K. Terashima, “Liquid crystal compounds having bis(trifluoromethyl)phenyl rings, liquid crystal compositions and liquid crystal display devices,” European Patent 1, 245, 660 (February 23, 2005).
  33. S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
    [Crossref]
  34. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [Crossref]
  35. M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
    [Crossref]
  36. P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
    [Crossref]
  37. A. Banerjee and D. E. Falvey, “Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone,” J. Am. Chem. Soc. 120(12), 2965–2966 (1998).
    [Crossref]

2014 (3)

P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
[Crossref] [PubMed]

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

2013 (3)

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
[Crossref]

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

2012 (4)

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
[Crossref]

2011 (3)

T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi, Y. Okumura, and H. Kikuchi, “Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal,” Opt. Mater. Express 1(8), 1502–1510 (2011).
[Crossref]

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

2010 (3)

H. Nam and S. W. Lee, “Low-power liquid crystal display television panel with reduced motion blur,” IEEE Trans. Consum. Electron. 56(2), 307–311 (2010).
[Crossref]

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

S. Y. Lu and L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
[Crossref] [PubMed]

2007 (1)

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

2006 (2)

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

2004 (3)

D. Pauluth and K. Tarumi, “Advanced liquid crystals for television,” J. Mater. Chem. 14(8), 1219–1227 (2004).
[Crossref]

C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
[Crossref]

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

2002 (1)

I. K. Huh and Y. B. Kim, “New low viscosity liquid crystal compounds containing the 2,3,4-trifluorophenyl moiety for active matrix displays,” Liq. Cryst. 29(10), 1265–1273 (2002).
[Crossref]

2000 (1)

P. Kirsch and M. Bremer, “Nematic liquid crystal for active matrix displays: Molecular design and synthesis,” Angew. Chem. Int. Ed. 39(23), 4216–4235 (2000).
[Crossref]

1998 (1)

A. Banerjee and D. E. Falvey, “Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone,” J. Am. Chem. Soc. 120(12), 2965–2966 (1998).
[Crossref]

1997 (3)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

1992 (2)

M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Displays 13(1), 11–34 (1992).
[Crossref]

K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
[Crossref]

1990 (1)

S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
[Crossref]

1978 (1)

S. Saito and H. Yamamoto, “Transient behavior of field-induced reorientation in variously oriented nematic liquid crystals,” Jpn. J. Appl. Phys. 17(2), 395–406 (1978).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Aratani, S.

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

Araya, K.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Badano, A.

P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
[Crossref] [PubMed]

Banerjee, A.

A. Banerjee and D. E. Falvey, “Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone,” J. Am. Chem. Soc. 120(12), 2965–2966 (1998).
[Crossref]

Baptist, J. R.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Bhowmik, A.

L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
[Crossref]

Bos, P.

L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
[Crossref]

Bremer, M.

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

P. Kirsch and M. Bremer, “Nematic liquid crystal for active matrix displays: Molecular design and synthesis,” Angew. Chem. Int. Ed. 39(23), 4216–4235 (2000).
[Crossref]

Celinski, Z.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Chang, C.-Y.

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

Chen, Y.

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

Chiang, I. H.

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Chien, L. C.

Chuang, W. T.

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Dunmur, D. A.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Falvey, D. E.

A. Banerjee and D. E. Falvey, “Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone,” J. Am. Chem. Soc. 120(12), 2965–2966 (1998).
[Crossref]

Finkenzeller, U.

K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
[Crossref]

S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
[Crossref]

Garboyskiy, Y.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Gauza, S.

C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
[Crossref]

Glushenko, A.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Grossel, M. C.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Haseba, Y.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Higuchi, H.

Hirata, Y.

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Hird, M.

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

Hsu, C.-S.

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

Huh, I. K.

I. K. Huh and Y. B. Kim, “New low viscosity liquid crystal compounds containing the 2,3,4-trifluorophenyl moiety for active matrix displays,” Liq. Cryst. 29(10), 1265–1273 (2002).
[Crossref]

Hunter, T.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Ishii, R.

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Jangb, W. G.

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Jaroszewicz, L.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Jeong, I. H.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Jeonga, E.

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Jeonga, Y. H.

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Kang, H. S.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Kang, S. W.

Kataoka, S.

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

Kedzierski, J.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Kikuchi, H.

Kim, H. J.

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

Kim, Y. B.

I. K. Huh and Y. B. Kim, “New low viscosity liquid crystal compounds containing the 2,3,4-trifluorophenyl moiety for active matrix displays,” Liq. Cryst. 29(10), 1265–1273 (2002).
[Crossref]

Kirsch, P.

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

P. Kirsch and M. Bremer, “Nematic liquid crystal for active matrix displays: Molecular design and synthesis,” Angew. Chem. Int. Ed. 39(23), 4216–4235 (2000).
[Crossref]

Klasen-Memmer, M.

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

Koike, Y.

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

Kondo, K.

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Kumar, P.

Kundu, S.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Lee, J. J.

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Lee, J. Y.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

Lee, M. H.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Lee, S. H.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

P. Kumar, S. W. Kang, and S. H. Lee, “Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal,” Opt. Mater. Express 2(8), 1121–1134 (2012).
[Crossref]

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

Lee, S. W.

H. Nam and S. W. Lee, “Low-power liquid crystal display television panel with reduced motion blur,” IEEE Trans. Consum. Electron. 56(2), 307–311 (2010).
[Crossref]

Leeb, S. H.

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Lim, J. H.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Lim, Y. J.

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Lima, Y. J.

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Lin, H. C.

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Lin, P. T.

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

Liu, P.

P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
[Crossref] [PubMed]

Long, C. J.

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Lu, L.

L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
[Crossref]

Lu, S. Y.

Luckhurst, G. R.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Ma, H.

Malkinski, L. M.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Marchant-Lane, S. E.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Marczak, J.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Mazur, R.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Min, S. G.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Miszczyk, E.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Mizunuma, T.

Mizusaki, M.

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

Morawiak, P.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Nagano, Y.

Nam, H.

H. Nam and S. W. Lee, “Low-power liquid crystal display television panel with reduced motion blur,” IEEE Trans. Consum. Electron. 56(2), 307–311 (2010).
[Crossref]

Nowinowski-Kruszelnick, E.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Ogawa, T.

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Ogawa, Y.

Oh-e, M.

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Ohmuro, K.

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

Ohta, M.

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

Okamoto, K.

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

Okumura, Y.

Olifierczuk, M.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Oo, T. N.

Park, D. S.

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

Park, Y. J.

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

Pauluth, D.

D. Pauluth and K. Tarumi, “Advanced liquid crystals for television,” J. Mater. Chem. 14(8), 1219–1227 (2004).
[Crossref]

Perkowski, P.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Piecek, W.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Ramos, E.

S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
[Crossref]

Raszewski, Z.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Saito, S.

S. Saito and H. Yamamoto, “Transient behavior of field-induced reorientation in variously oriented nematic liquid crystals,” Jpn. J. Appl. Phys. 17(2), 395–406 (1978).
[Crossref]

Sasaki, T.

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

Schadt, M.

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Displays 13(1), 11–34 (1992).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Schuler, B.

K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
[Crossref]

Soms, L.

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

Song, I. S.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

Sugimura, A.

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

Sung, I. K.

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

Tarumi, K.

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

D. Pauluth and K. Tarumi, “Advanced liquid crystals for television,” J. Mater. Chem. 14(8), 1219–1227 (2004).
[Crossref]

K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
[Crossref]

Thomposon, J.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Umeda, Y.

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

Wen, C. H.

C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
[Crossref]

Wily, J. B.

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Wu, S. T.

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
[Crossref]

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
[Crossref]

Yamada, S.

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Yamade, Y.

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

Yamamoto, H.

S. Saito and H. Yamamoto, “Transient behavior of field-induced reorientation in variously oriented nematic liquid crystals,” Jpn. J. Appl. Phys. 17(2), 395–406 (1978).
[Crossref]

Yoshimura, Y.

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

Yu, I. H.

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

Zafar, F.

P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

I. H. Chiang, C. J. Long, H. C. Lin, W. T. Chuang, J. J. Lee, and H. C. Lin, “Broad ranges and fast responses of single-component blue-phase liquid crystals containing banana-shaped 1,3,4-oxadiazole cores,” ACS Appl. Mater. Interfaces 6(1), 228–235 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

P. Kirsch and M. Bremer, “Nematic liquid crystal for active matrix displays: Molecular design and synthesis,” Angew. Chem. Int. Ed. 39(23), 4216–4235 (2000).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

M. Bremer, P. Kirsch, M. Klasen-Memmer, and K. Tarumi, “The TV in your pocket: Development of liquid-crystal materials for the new millennium,” Angew. Chem. Int. Ed. Engl. 52(34), 8880–8896 (2013).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Appl. Phys. Express (1)

Y. J. Lim, I. H. Jeong, H. S. Kang, S. Kundu, M. H. Lee, and S. H. Lee, “Reduction of the residual DC in the photoaligned twisted nematic liquid crystal display using polymerized reactive mesogen,” Appl. Phys. Express 5(8), 081701 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Y. Garboyskiy, J. R. Baptist, J. Thomposon, T. Hunter, J. H. Lim, S. G. Min, J. B. Wily, L. M. Malkinski, A. Glushenko, and Z. Celinski, “Increasing the switching speed of liquid crystal devices with magnetic nanorods,” Appl. Phys. Lett. 101(18), 181109 (2012).
[Crossref]

Chem. Soc. Rev. (1)

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

Dig. Tech. Pap. (1)

K. Ohmuro, S. Kataoka, T. Sasaki, and Y. Koike, “Development of super-high image quality vertical alignment mode LCD,” Dig. Tech. Pap. 28, 845–848 (1997).

Displays (1)

M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Displays 13(1), 11–34 (1992).
[Crossref]

Eur. Polym. J. (1)

Y. J. Park, H. J. Kim, D. S. Park, and I. K. Sung, “Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal,” Eur. Polym. J. 46(7), 1642–1648 (2010).
[Crossref]

IEEE Trans. Consum. Electron. (1)

H. Nam and S. W. Lee, “Low-power liquid crystal display television panel with reduced motion blur,” IEEE Trans. Consum. Electron. 56(2), 307–311 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

A. Banerjee and D. E. Falvey, “Direct photolysis of phenacyl protecting groups studied by laser flash photolysis: An excited state hydrogen atom abstraction pathway leads to formation of carboxylic acids and acetophenone,” J. Am. Chem. Soc. 120(12), 2965–2966 (1998).
[Crossref]

J. Appl. Phys. (2)

S. T. Wu, E. Ramos, and U. Finkenzeller, “Polarized UV spectroscopy of conjugated liquid crystals,” J. Appl. Phys. 68(1), 78–85 (1990).
[Crossref]

Z. Raszewski, W. Piecek, L. Jaroszewicz, L. Soms, J. Marczak, E. Nowinowski-Kruszelnick, P. Perkowski, J. Kedzierski, E. Miszczyk, M. Olifierczuk, P. Morawiak, and R. Mazur, “Laser damage resistant nematic liquid crystal cell,” J. Appl. Phys. 114(5), 053104 (2013).
[Crossref]

J. Appl. Polym. Sci. (1)

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

J. Digit. Imaging (1)

P. Liu, F. Zafar, and A. Badano, “The effect of ambient illumination on handheld display image quality,” J. Digit. Imaging 27(1), 12–18 (2014).
[Crossref] [PubMed]

J. Mater. Chem. (2)

K. Araya, D. A. Dunmur, M. C. Grossel, G. R. Luckhurst, S. E. Marchant-Lane, and A. Sugimura, “Flexible dimers as dopants for liquid crystal display mixtures with faster relaxation times,” J. Mater. Chem. 16(48), 4675–4689 (2006).
[Crossref]

D. Pauluth and K. Tarumi, “Advanced liquid crystals for television,” J. Mater. Chem. 14(8), 1219–1227 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

I. H. Yu, I. S. Song, J. Y. Lee, and S. H. Lee, “Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display,” J. Phys. D Appl. Phys. 39(11), 2367–2372 (2006).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. Mizusaki, Y. Yoshimura, Y. Yamade, and K. Okamoto, “Analysis of ion behavior affecting voltage holding property of liquid crystal displays,” Jpn. J. Appl. Phys. 51(1), 014102 (2012).
[Crossref]

S. Saito and H. Yamamoto, “Transient behavior of field-induced reorientation in variously oriented nematic liquid crystals,” Jpn. J. Appl. Phys. 17(2), 395–406 (1978).
[Crossref]

K. Tarumi, U. Finkenzeller, and B. Schuler, “Dynamic behaviour of twisted nematic liquid crystals,” Jpn. J. Appl. Phys. 31(1), 2829–2836 (1992).
[Crossref]

M. Oh-e, Y. Umeda, M. Ohta, S. Aratani, and K. Kondo, “Unusual voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals,” Jpn. J. Appl. Phys. 36(Part 2, No. 8A), L1025–L1028 (1997).
[Crossref]

Liq. Cryst. (4)

I. K. Huh and Y. B. Kim, “New low viscosity liquid crystal compounds containing the 2,3,4-trifluorophenyl moiety for active matrix displays,” Liq. Cryst. 29(10), 1265–1273 (2002).
[Crossref]

L. Lu, A. Bhowmik, and P. Bos, “The effect of dielectric constant on ion adsorption in liquid crystal devices,” Liq. Cryst. 40(1), 7–13 (2013).
[Crossref]

C. H. Wen, S. Gauza, and S. T. Wu, “Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups,” Liq. Cryst. 3(11), 1479–1485 (2004).
[Crossref]

Y. H. Jeonga, Y. J. Lima, E. Jeonga, W. G. Jangb, and S. H. Leeb, “Optimal pixel design for low driving, single gamma curve and single cell‐gap transflective fringe‐field switching liquid crystal display,” Liq. Cryst. 35(2), 187–194 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. T. Lin, S. T. Wu, C.-Y. Chang, and C.-S. Hsu, “UV stability of high birefringence liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 411(1), 1285–1295 (2004).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Radiological Phys. Technol. (1)

S. Yamada, Y. Hirata, R. Ishii, and T. Ogawa, “Visual evaluation and usefulness of medical high-resolution liquid-crystal displays with use of independent sub-pixel driving technology,” Radiological Phys. Technol. 4(2), 128–133 (2011).
[Crossref] [PubMed]

Other (3)

Y. Kubo, F. Takeshita, T. Matsushita, E. Nakagawa, and T. Kondo, “Liquid crystal composition and liquid crystal display device,” European Patent 0, 832, 955 (April 1, 1998).

K. Miyazawa, T. Kato, Y. Kubo, and K. Terashima, “Liquid crystal compounds having bis(trifluoromethyl)phenyl rings, liquid crystal compositions and liquid crystal display devices,” European Patent 1, 245, 660 (February 23, 2005).

A. C. Chen, P. C. Huang, S. H. Liu, and K. L. Cheng, “Novel LC materials toward the faster response time and lower driving voltage,” In Proceedings of the 14th International Display Workshops (IDW ’07)1–3, 383–386 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structures of the UV-resistant dopant 3HBBTfV and the commercial compoent 3HBEBTf.
Fig. 2
Fig. 2 Synthesis route of dopant 3HBBTfV
Fig. 3
Fig. 3 Polarizing optical microphotograph of LC mixture C exhibited Schlieren texture in the nematic phase at room temperature between untreated glass plates.
Fig. 4
Fig. 4 V-T curves of LC mixtures A, B, and C in TN cells.
Fig. 5
Fig. 5 V-T curves of (a) LC mixture A, (b) LC mixture B, and (c) LC mixture C in TN cells before and after UV exposure, where the UV exposure was proceeded at wavelength =254 nm with an illumination energy > 50W/m2 for 2.5 h.
Fig. 6
Fig. 6 VHR trends of LC mixtures A, B, and C in TN cells under exposures of (a) UV light (365 nm, 0.55 W/m2, 12 h) and (b) Rayonet UV reactor system (254 nm, > 50W/m2, 2.5 h), respectively.

Tables (3)

Tables Icon

Table 1 Chemical Structures and Composition of LC Mixture A (Host)

Tables Icon

Table 2 Thermal Properties and EO Characteristicsa of LC Mixtures

Tables Icon

Table 3 Response Time Values (τr, τf, and τtotal) of LC Mixturesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τr= γ 1 d 2 π 2 K 11 ( | ε a | π 2 K 11 V 2 1 ) 1
τf= γ 1 d 2 π 2 K 11

Metrics