Abstract

Surface plasmon resonance (SPR) spectroscopy of the metal nanostructure (MN) is widely used in chemical and biological sensing. The biosensor characteristics of the MN are affected by the size, shapes, substrate, and so on. Especially, some studies about the mode of the MN show that the surface plasmon polaritons (SPPs) coupled mode excitation has a significant impact on the sensitivity of the MN biosensor. To reach the aim of obtaining the high sensitivity MN biosensor, the coupled mode of the gold elliptic nanohole array (GENA) was simulated and analyzed. It shows that the coupled mode was influenced by the refractive indexes of medium and substrate. The coupled mode resonance peak shows a higher sensitivity than that of other SPPs mode peaks. The GENA biosensor chips were fabricated and integrated with polydimethylsiloxane (PDMS) microfluidics. The sensitivity of the GENA is characterized by transmission spectra of GENA in deionized water and aqueous NaCl solution. The coupled mode peak sensitivity of the biosensor reaches 549 nm/RIU. An antigen-antibody interaction experiment was also adopted to verify the sensitivity of the surface binding reaction. The sensitivity of detected concentration of the AFP (α-fetoprotein) in our experiment has been reached 25 ng/ml closed to the clinic concentration. The GENA biosensor chip has potential application in label-free chemical and biomedical fields, especially, cancer biomarker testing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array

Yuanyuan Li, Jian Pan, Peng Zhan, Shining Zhu, Naiben Ming, Zhenlin Wang, Wenda Han, Xunya Jiang, and Jian Zi
Opt. Express 18(4) 3546-3555 (2010)

Highly flexible near-infrared metamaterials

G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, and K. W. Cheah
Opt. Express 20(1) 397-402 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).
    [Crossref] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
    [Crossref] [PubMed]
  4. M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
    [Crossref] [PubMed]
  5. A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
    [Crossref]
  6. L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
    [PubMed]
  7. B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
    [Crossref]
  8. B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
    [Crossref] [PubMed]
  9. C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
    [Crossref] [PubMed]
  10. B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
    [Crossref]
  11. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  12. T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
    [Crossref] [PubMed]
  13. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  14. S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  15. Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
    [PubMed]
  16. Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
    [Crossref]
  17. M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
    [Crossref]
  18. E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
    [Crossref]
  19. K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
    [Crossref]
  20. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  21. G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
    [Crossref] [PubMed]
  22. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  23. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
    [Crossref] [PubMed]
  24. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
    [Crossref] [PubMed]
  25. Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
    [Crossref] [PubMed]

2014 (4)

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

2013 (10)

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).
[Crossref] [PubMed]

2011 (4)

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

2010 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (1)

2008 (1)

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

2007 (1)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (1)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Aili, D.

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

Alaverdyan, Y.

Altug, H.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Bai, P.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Bao, K.

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Berini, P.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Brian, B.

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Carrascosa, L. G.

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Cervantes Tellez, G. A.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chang, S. H.

Chen, P.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Chen, S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Chen, W.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Chih, M. J.

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Chuo, Y. D.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cornell, T. T.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Coskun, A. F.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

Cui, K.

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

Deng, J.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Dmitriev, A.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Escobedo, C.

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

Estévez, M. C.

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Fan, B.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Fang, Z. Y.

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).
[Crossref] [PubMed]

Feng, X.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Fu, J.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Galarreta, B. C.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

González-Guerrero, A. B.

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Gordon, R.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Gray, S. K.

Gu, M.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Halas, N. J.

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Han, S.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Hassan, S.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

He, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Herman, D.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

Hohertz, D.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Huang, M.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Huang, N. T.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Huang, Y.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Ingram, W.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Jia, B.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Jiang, R. B.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Jin, C. J.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Käll, M.

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Kaminska, B.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Kavanagh, K. L.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kurabayashi, K.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Landrock, C.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Larsen, G. K.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lechuga, L. M.

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

Lee, K. L.

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, Y.

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

Liu, F.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Liu, M. X.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Liu, T. R.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Loke, Y. C.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

MacDonald, K. F.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Martinsson, E.

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ng, S. H.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Nikolaenko, A. E.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Nordlander, P.

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Oh, B. R.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Omrane, B.

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

Otte, M. A.

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Ou, J. Y.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Ozcan, A.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Plum, E.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Ren, M. X.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Schatz, G. C.

Seo, J. H.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Sepulveda, B.

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

Sepúlveda, B.

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

Shahjamali, M. M.

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

Shanley, T. P.

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Tait, R. N.

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Tan, C. Y. L.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Tao, Y. T.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tjahjana, L.

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Tobing, L. Y.

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Tsai, J. T.

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Tse, M. S.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Wang, J. F.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Wang, X.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

Wang, X. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Wang, Y.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Wei, P. K.

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wong, T. I.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Wu, L.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Xiao, G. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Xiong, Q.

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Xu, H.

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Xu, J.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Yang, X. D.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Yao, Y. D.

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

Zhang, D. H.

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Zhang, J.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Zhang, Q.

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Zhang, S. P.

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhao, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Zhou, J. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Zhou, X.

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

Zhou, Z. K.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Zhu, J. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Zhu, X.

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).
[Crossref] [PubMed]

ACS Nano (1)

B. R. Oh, N. T. Huang, W. Chen, J. H. Seo, P. Chen, T. T. Cornell, T. P. Shanley, J. Fu, and K. Kurabayashi, “Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood,” ACS Nano 8(3), 2667–2676 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25(28), 3840–3856 (2013).
[Crossref] [PubMed]

M. X. Ren, B. Jia, J. Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, and N. I. Zheludev, “Nanostructured plasmonic medium for terahertz bandwidth all-optical switching,” Adv. Mater. 23(46), 5540–5544 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, and Y. Huang, “Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 102(6), 061109 (2013).
[Crossref]

IEEE J. Sel. Top Quant. (1)

K. L. Lee, J. T. Tsai, M. J. Chih, Y. D. Yao, and P. K. Wei, “High-throughput label-free detection using a gold nanoslit array with 2-D spectral images and spectral integration Mmethods,” IEEE J. Sel. Top Quant. 19(3), 4800407 (2013).
[Crossref]

IEEE Sens. J. (1)

Y. D. Chuo, D. Hohertz, C. Landrock, B. Omrane, K. L. Kavanagh, and B. Kaminska, “Large-Area Low-Cost Flexible Plastic Nanohole Arrays for Integrated Bio-Chemical Sensing,” IEEE Sens. J. 13(10), 3982–3990 (2013).
[Crossref]

J. Phys. Chem. C (2)

M. A. Otte, M. C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, “Substrate Effect on the Refractive Index Sensitivity of Silver Nanoparticles,” J. Phys. Chem. C 118(42), 24680–24687 (2014).
[Crossref]

Lab Chip (3)

T. I. Wong, S. Han, L. Wu, Y. Wang, J. Deng, C. Y. L. Tan, P. Bai, Y. C. Loke, X. D. Yang, M. S. Tse, S. H. Ng, and X. Zhou, “High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers,” Lab Chip 13(12), 2405–2413 (2013).
[Crossref] [PubMed]

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

G. A. Cervantes Tellez, S. Hassan, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13(13), 2541–2546 (2013).
[Crossref] [PubMed]

Light: Sci. Appl. (1)

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light: Sci. Appl. 3(1), e122 (2014).
[Crossref]

Nano Lett. (3)

S. P. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[Crossref] [PubMed]

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable Three-Dimensional Helically Stacked Plasmonic Layers on Nanosphere Monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Nat Commun (1)

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat Commun 4(381), 2381 (2013).
[PubMed]

Nat. Nanotechnol. (1)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci Rep (1)

L. Y. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci Rep 3(2437), 2437 (2013).
[PubMed]

Sens. Actuators B Chem. (1)

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators B Chem. 186, 495–505 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the GENA arranged in a two-dimension square lattice. The insert figure shows the GENA without substrate.
Fig. 2
Fig. 2 (a) Simulation of the transmission spectra of the GENA with P = 600 nm, a = 470 nm, b = 410 nm and t = 60 nm. The insert figure shows the shift of the peak. (b) Linear fitting between the wavelengths of transmission peaks and the refractive index of medium nd.
Fig. 3
Fig. 3 (a) Simulation of the transmission spectra of the GENA in different situations. The order modes are labeled. (b) Simulation of the transmission spectra of the GENA without substrate in DI water and aqueous NaCl solution. The insert figure shows the linear fitting between the wavelengths of transmission peak and nd. (c) and (d) FDTD simulation data for the GENA transmission in a large range nd with and without quartz substrate, respectively. High and low transmittance are scaled with color in red and blue. The white arrows show each mode.
Fig. 4
Fig. 4 (a) Simulation of the transmission spectra of the GENA on different substrates in the DI water. (b)- (e) Log 10-scale plots of the calculated electric field intensity distribution of the GENA XZ cross-section with substrate of quartz, Al2O3, SiN and ITO at 794 nm, respectively.
Fig. 5
Fig. 5 A schematic view of the fabrication processes of GENA and PDMS microfluidic.
Fig. 6
Fig. 6 The schematic diagram of the transmission spectrum measurement setup.
Fig. 7
Fig. 7 (a) SEM image of the GENA structure (P = 600 nm, a = 235 nm, b = 205 nm and t = 60 nm). (b) The measured transmission spectra of the GENA in (a) in DI water and NaCl aqueous solution. The SWP is red shift with nd increasing. (c) Linear fitting between the wavelengths of the SWPs and nd. The S of the GENA biosensor is 549 nm/RIU. (d) The shift of the SWP increases as AFP concentration is increasing. The inset figure shows the SWP shift after 25 ng/ml AFP injected and bonded.

Metrics