Abstract

The optical transitions of the three-dimensionally confined GaN/AlGaN asymmetric multi quantum disks were characterized by micro photoluminescence and time-resolved photoluminescence. Several fine emission lines, originating from the wide and narrow quantum disks, were observed around 3.7 eV from a single nanocolumn dispersed on a patterned SiO2 substrate. The photoluminescence from the wide quantum disk shifts a little with increasing excitation power, while that from the narrow quantum disk does not shift. This effect can be explained by carrier tunneling for the 3-dimensionally confined quantum disks. Kelvin probe force microscopy results confirm that the GaN/AlGaN multiquantum disks are surrounded by a GaN shell, which has a higher potential than core GaN.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum confinement dependence of exciton localization in a-plane GaN/AlGaN multiquantum wells investigated by temperature dependent photoluminescence

Feng Wu, Jun Zhang, Shuai Wang, Hanling Long, Jiangnan Dai, Zhe Chuan Feng, Zheng Gong, and Changqing Chen
Opt. Mater. Express 5(11) 2608-2615 (2015)

Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates

Bilal Janjua, Haiding Sun, Chao Zhao, Dalaver H. Anjum, Davide Priante, Abdullah A. Alhamoud, Feng Wu, Xiaohang Li, Abdulrahman M. Albadri, Ahmed Y. Alyamani, Munir M. El-Desouki, Tien Khee Ng, and Boon S. Ooi
Opt. Express 25(2) 1381-1390 (2017)

Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer

Davide Priante, Bilal Janjua, Aditya Prabaswara, Ram Chandra Subedi, Rami T. Elafandy, Sergei Lopatin, Dalaver H. Anjum, Chao Zhao, Tien Khee Ng, and Boon S. Ooi
Opt. Mater. Express 7(12) 4214-4224 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(00), 351–359 (1997).
    [Crossref]
  2. S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
    [Crossref]
  3. A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
    [Crossref]
  4. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
    [Crossref]
  5. J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
    [Crossref] [PubMed]
  6. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
    [Crossref]
  7. A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
    [Crossref]
  8. K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
    [Crossref]
  9. K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
    [Crossref]
  10. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).
  11. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
    [Crossref] [PubMed]
  12. S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
    [Crossref]
  13. L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
    [Crossref] [PubMed]
  14. S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
    [Crossref] [PubMed]
  15. Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
    [Crossref]
  16. C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
    [Crossref] [PubMed]
  17. Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
    [Crossref]
  18. D. J. Leopold and M. M. Leopold, “Tunneling-induced optical nonlinearities in asymmetric Al0.3Ga0.7As/GaAs double-quantum-well structures,” Phys. Rev. B Condens. Matter 42(17), 11147–11158 (1990).
    [Crossref] [PubMed]
  19. J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
    [Crossref]
  20. K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
    [Crossref]
  21. S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
    [Crossref]
  22. L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
    [Crossref]
  23. M. Prutton, Surface Physics (Oxford Univ. Press, 1983) 2nd ed. P78.

2013 (1)

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

2011 (2)

S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
[Crossref]

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

2010 (1)

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

2006 (3)

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

2005 (3)

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

2004 (3)

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

1998 (1)

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

1997 (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(00), 351–359 (1997).
[Crossref]

1995 (1)

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

1993 (1)

A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
[Crossref]

1990 (1)

D. J. Leopold and M. M. Leopold, “Tunneling-induced optical nonlinearities in asymmetric Al0.3Ga0.7As/GaAs double-quantum-well structures,” Phys. Rev. B Condens. Matter 42(17), 11147–11158 (1990).
[Crossref] [PubMed]

Aebi, P.

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

Arakawa, Y.

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

Arita, M.

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Birner, S.

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

Bougerol, C.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Bour, D. P.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(00), 351–359 (1997).
[Crossref]

Bykhovski, A.

A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
[Crossref]

Calleja, E.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Carnevale, S. D.

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Choi, K.

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

Daudin, B.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

De Luna Bugallo, A.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Diederich, L.

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

Dong, Y.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

Fernández-Garrido, S.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Fu, D. J.

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

Gayral, B.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Gelmont, B.

A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
[Crossref]

Gradecak, S.

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

Holmes, M. J.

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

Im, H.

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

Iwasa, N.

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

Jacopin, G.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Jahn, U.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Julien, F. H.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Kako, S.

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

Kang, T. W.

S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
[Crossref]

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

Kawai, M.

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

Kempa, T. J.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

Kikuchi, A.

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

Kishino, K.

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

Kociak, M.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Kurbanov, S.

S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
[Crossref]

Kuttel, O. M.

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

Lee, K. H.

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

Lee, S. H.

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Leopold, D. J.

D. J. Leopold and M. M. Leopold, “Tunneling-induced optical nonlinearities in asymmetric Al0.3Ga0.7As/GaAs double-quantum-well structures,” Phys. Rev. B Condens. Matter 42(17), 11147–11158 (1990).
[Crossref] [PubMed]

Leopold, M. M.

D. J. Leopold and M. M. Leopold, “Tunneling-induced optical nonlinearities in asymmetric Al0.3Ga0.7As/GaAs double-quantum-well structures,” Phys. Rev. B Condens. Matter 42(17), 11147–11158 (1990).
[Crossref] [PubMed]

Li, Y.

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

Lieber, C. M.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

March, K.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Mills, M. J.

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Myers, R. C.

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Na, J. H.

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

Nagahama, S. I.

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

Oh, J. E.

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

Park, C. M.

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

Park, H.-G.

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

Park, Y. S.

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

Phillips, P. J.

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Ploog, K. H.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Ponce, F. A.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(00), 351–359 (1997).
[Crossref]

Qian, F.

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

Renard, J.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Rigutti, L.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Ristic, J.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Rivera, C.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Schlapbach, L.

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

Shur, M.

A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
[Crossref]

Songmuang, R.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Stephan, O.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Tada, M.

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

Taylor, R. A.

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

Tchernycheva, M.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Tian, B.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

Tourbot, G.

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Trampert, A.

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Yamano, K.

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

Yang, J.

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Yang, W. C.

S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
[Crossref]

Yi, S. N.

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

Zagonel, L. F.

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

Appl. Phys. Express (1)

S. Kurbanov, W. C. Yang, and T. W. Kang, “Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV,” Appl. Phys. Express 4(2), 002110 (2011).
[Crossref]

Appl. Phys. Lett. (4)

K. Choi, S. Kako, M. J. Holmes, M. Arita, and Y. Arakawa, “Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires,” Appl. Phys. Lett. 103(17), 171907 (2013).
[Crossref]

K. H. Lee, J. H. Na, R. A. Taylor, S. N. Yi, S. Birner, Y. S. Park, C. M. Park, and T. W. Kang, “Enhancement of free-carrier screening due to tunneling in coupled asymmetric GaN/AlGaN quantum discs,” Appl. Phys. Lett. 89(2), 023103 (2006).
[Crossref]

S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[Crossref]

Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Appl. Phys. Lett. 85(23), 5718–5720 (2004).
[Crossref]

J. Appl. Phys. (1)

A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74(11), 6734–6739 (1993).
[Crossref]

J. Cryst. Growth (1)

Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, “Self-assembled GaN nano-rods grown directly on (111) Si substrates: Dependence on growth conditions,” J. Cryst. Growth 282(3–4), 313–319 (2005).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34(27A), L797–L799 (1995).
[Crossref]

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate,” Jpn. J. Appl. Phys. 43(12A12A), L1524–L1526 (2004).
[Crossref]

Nano Lett. (3)

L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, and R. Songmuang, “Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire,” Nano Lett. 10(8), 2939–2943 (2010).
[Crossref] [PubMed]

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills, and R. C. Myers, “Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes,” Nano Lett. 11(2), 866–871 (2011).
[Crossref] [PubMed]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref] [PubMed]

Nanotechnology (2)

K. H. Lee, S. Birner, J. H. Na, R. A. Taylor, S. N. Yi, Y. S. Park, C. M. Park, and T. W. Kang, “Two-photon excitation spectroscopy of coupled asymmetric GaN/AlGaN quantum discs,” Nanotechnology 17(23), 5754–5758 (2006).
[Crossref]

C. M. Park, Y. S. Park, H. Im, and T. W. Kang, “Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time,” Nanotechnology 17(4), 952–955 (2006).
[Crossref] [PubMed]

Nature (1)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(00), 351–359 (1997).
[Crossref]

Phys. Rev. B (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, “Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires,” Phys. Rev. B 80(12), 121305 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. J. Leopold and M. M. Leopold, “Tunneling-induced optical nonlinearities in asymmetric Al0.3Ga0.7As/GaAs double-quantum-well structures,” Phys. Rev. B Condens. Matter 42(17), 11147–11158 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. Ristić, E. Calleja, A. Trampert, S. Fernández-Garrido, C. Rivera, U. Jahn, and K. H. Ploog, “Columnar AlGaN/GaN Nanocavities with AlN/GaN bragg reflectors grown by molecular beam epitaxy on Si(111),” Phys. Rev. Lett. 94(14), 146102 (2005).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

A. Kikuchi, K. Yamano, M. Tada, and K. Kishino, “Stimulated emission from GaN nanocolumns,” Phys. Status Solidi B 241(12), 2754–2758 (2004).
[Crossref]

Surf. Sci. (1)

L. Diederich, O. M. Kuttel, P. Aebi, and L. Schlapbach, “Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy,” Surf. Sci. 418(1), 219–239 (1998).
[Crossref]

Other (2)

M. Prutton, Surface Physics (Oxford Univ. Press, 1983) 2nd ed. P78.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM top view image of the GaN/AlGaN AQdisks grown on GaN nanorods. (b) Schematic diagram of the sample structures.
Fig. 2
Fig. 2 (a) TEM image of the GaN/AlGaN MQDdisks. (b) The enlarged image of the red highlighted region in a. (c)~(e) zoomed images of the outlined regions as A, B, and C.
Fig. 3
Fig. 3 (a) Macro-PL spectra of bare GaN nanocolumns and of GaN/AlGaN MQDs grown on GaN nanocolumns taken at 10 K. (b) Excitation power dependent micro-PL spectra of the GaN/AlGaN ACMQDs. The excitation powers used for the black, green, and pink are 4, 200, and 720 kW/cm2, respectively. The inset depicts an SEM image of a single nanocolumn dispersed on a SiO2 substrate patterned with a metal reference grid. The scale bar of the enlarged image is 1 μm. (c) A μ-PL spectrum taken from a MQDs dispersed on SiO2 substrate as shown in (a) at an excitation power of ~200 kW/cm2.
Fig. 4
Fig. 4 Time-resolved PL spectra of the 3.67 eV (DA) and 3.75 eV (DB) of the asymmetric multiquantum disks at two different excitation power densities of 4 kW/cm2 and 600 kW/cm2 taken at 4.2 K.
Fig. 5
Fig. 5 Schematic band diagram of the ACMQDs. (a) low excitation power and (b) high excitation power.
Fig. 6
Fig. 6 (a) and (b) present an atomic force microscopy image and Kelvin probe force microscopy image of the asymmetric multiquantum wells measured on the tip of the nanocolumns, respectively. The scale bars are 250 nm. (c) Potential line profile of the nanocolumn indicated in (b), which illustrates in more detail the potential distribution.

Metrics