Abstract

We report on the fluorine doping and codoping of powder-based silica bulk glasses fabricated using REPUSIL (Reactive Powder Sintering of Silica) technology. The maximum doping level of 1.5 mol% of SiF4 is associated with a refractive index decrease by −8 x 10−3 compared to undoped silica and an essential decrease in the transition temperature by about 200 K. Fluorine codoping is eminently suitable for the direct refractive index adjustment of actively-doped silica glass materials (e.g., Al/Yb or Al/Tm). The fluorine codoping of Al/Yb silica glass significantly reduces parasitic photodarkening processes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2

Frank Froehlich, Claudia Aichele, Stephan Grimm, and Kay Schuster
Opt. Mater. Express 3(11) 1839-1854 (2013)

Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method

Shikai Wang, Wenbin Xu, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Wei Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 6(1) 69-78 (2016)

Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

Fan Wang, Lili Hu, Wenbin Xu, Meng Wang, Suya Feng, Jinjun Ren, Lei Zhang, Danping Chen, Nadège Ollier, Guojun Gao, Chunlei Yu, and Shikai Wang
Opt. Express 25(21) 25960-25969 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).
  2. A. Tünnermann, H. Zellmer, H. W. Schöne, A. Giesen, and K. Contag, “New concepts for diode pumped solid state lasers in high power diode lasers,” in High-Power Diode Lasers, R. Diehl, ed. (Springer 2000).
  3. A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
    [Crossref]
  4. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, “High-average-power femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 28(20), 1984–1986 (2003).
    [Crossref] [PubMed]
  5. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  6. A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
    [Crossref]
  7. S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
    [Crossref]
  8. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]
  9. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
    [Crossref] [PubMed]
  10. J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
    [Crossref]
  11. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9 kW,” Opt. Lett. 36(16), 3061–3063 (2011).
    [Crossref] [PubMed]
  12. H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
    [Crossref]
  13. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [Crossref] [PubMed]
  14. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).
  15. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  16. W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
    [Crossref]
  17. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
    [Crossref]
  18. J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
    [Crossref]
  19. A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
    [Crossref]
  20. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
    [Crossref]
  21. F. Froehlich, C. Aichele, S. Grimm, and K. Schuster, “Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2,” Opt. Mater. Express 3(11), 1839–1854 (2013).
    [Crossref]
  22. A. Langner, G. Schötz, M. Such, M. Schwerin, M. Trommer, S. Grimm, A. Kalide, M. Leich, and F. Just, Patent DE 10 2013 204 815 A1 (2014).
  23. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22(19), 3102–3104 (1983).
    [Crossref] [PubMed]
  24. R. Clasen, “Preparation and sintering of high-density green bodies to high-purity silica glasses,” J. Non-Cryst. Solids 89(3), 334–344 (1987).
    [Crossref]
  25. J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
    [Crossref]

2015 (1)

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

2014 (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

2013 (2)

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

F. Froehlich, C. Aichele, S. Grimm, and K. Schuster, “Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2,” Opt. Mater. Express 3(11), 1839–1854 (2013).
[Crossref]

2012 (2)

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

2011 (3)

2010 (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).

2009 (1)

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

2008 (2)

2006 (2)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

2005 (2)

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

2004 (1)

2003 (2)

1993 (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

1987 (1)

R. Clasen, “Preparation and sintering of high-density green bodies to high-purity silica glasses,” J. Non-Cryst. Solids 89(3), 334–344 (1987).
[Crossref]

1983 (1)

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

F. Froehlich, C. Aichele, S. Grimm, and K. Schuster, “Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2,” Opt. Mater. Express 3(11), 1839–1854 (2013).
[Crossref]

Bachert, C.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Bartelt, H.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Boy, A. J.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Broeng, J.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).

Clasen, R.

R. Clasen, “Preparation and sintering of high-density green bodies to high-purity silica glasses,” J. Non-Cryst. Solids 89(3), 334–344 (1987).
[Crossref]

Clausnitzer, T.

Dellith, J.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

Dhar, A.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Eberhardt, R.

Eschrich, T.

Fleming, J. W.

Froehlich, F.

Fuchs, H.-J.

Grimm, S.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

F. Froehlich, C. Aichele, S. Grimm, and K. Schuster, “Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2,” Opt. Mater. Express 3(11), 1839–1854 (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Guryanov, A. N.

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

He, W.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

Iliew, R.

Ishiguro, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Ishikawa, S.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Jäger, M.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

Jakobsen, C.

Jeong, Y.

Jetschke, S.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Just, F.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Khopin, V. F.

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

Kirchhof, J.

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Kley, E.-B.

Kliner, A.

Knappe, B.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

Kobelke, J.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Kosolapov, A. F.

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

Kozak, M.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Krause, V.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Kyoto, M.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Langner, A.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Lederer, F.

Leich, M.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

Liem, A.

Limpert, J.

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Mörl, K.

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Müller, H. R.

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

Nolte, S.

Ohoga, Y.

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

Payne, D.

Petersson, A.

Rehmann, G.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Reichel, V.

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).

Sahu, J.

Sahu, J. K.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Salganskii, M. Yu.

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

Schmidt, O.

Schötz, G.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Schreiber, T.

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

F. Froehlich, C. Aichele, S. Grimm, and K. Schuster, “Fluorine incorporation into porous silica by gas phase doping with C2F6 in N2,” Opt. Mater. Express 3(11), 1839–1854 (2013).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Schwuchow, A.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Semenov, S. L.

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

Standish, R. J.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Such, M.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Tünnermann, A.

Tünnermann, T.

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Vienne, G.

Webb, A. S.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Wedel, B.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Wirth, C.

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Wood, D. L.

Yao, S.

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

Zellmer, H.

Zhu, Y.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

Zimer, H.

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3(4), 447–468 (2014).

Appl. Opt. (2)

C. R. Phys. (1)

H. R. Müller, J. Kirchhof, V. Reichel, and S. Unger, “Fibers for high power lasers and amplifiers,” C. R. Phys. 7(2), 154–162 (2006).
[Crossref]

Inorg. Mater. (1)

A. N. Guryanov, M. Yu. Salganskii, V. F. Khopin, A. F. Kosolapov, and S. L. Semenov, “High-Aperture Optical Waveguides Based on Fluorine-Doped Silica Glass,” Inorg. Mater. 45(7), 823–826 (2009).
[Crossref]

J. Mater. Sci. (1)

M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993).
[Crossref]

J. Non-Cryst. Solids (3)

J. Kirchhof and S. Unger, “Thermodynamics of fluorine incorporation into silica glass,” J. Non-Cryst. Solids 354(2-9), 540–545 (2008).
[Crossref]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

R. Clasen, “Preparation and sintering of high-density green bodies to high-purity silica glasses,” J. Non-Cryst. Solids 89(3), 334–344 (1987).
[Crossref]

JOSA B (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27(11), B63–B92 (2010).

Laser Phys. Lett. (2)

S. Yao, A. S. Webb, A. J. Boy, R. J. Standish, A. Dhar, and J. K. Sahu, “Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding,” Laser Phys. Lett. 8(6), 453–457 (2011).
[Crossref]

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jäger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Proc. SPIE (4)

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high-power laser fibers,” Proc. SPIE 5723, 261–272 (2005).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, A. Schwuchow, S. Grimm, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 82370F (2012).
[Crossref]

A. Langner, M. Such, G. Schötz, F. Just, M. Leich, S. Grimm, J. Dellith, M. Jäger, H. Zimer, M. Kozak, B. Wedel, G. Rehmann, C. Bachert, and V. Krause, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 86010G (2013).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and technologies for microstructured high power laser fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Other (2)

A. Tünnermann, H. Zellmer, H. W. Schöne, A. Giesen, and K. Contag, “New concepts for diode pumped solid state lasers in high power diode lasers,” in High-Power Diode Lasers, R. Diehl, ed. (Springer 2000).

A. Langner, G. Schötz, M. Such, M. Schwerin, M. Trommer, S. Grimm, A. Kalide, M. Leich, and F. Just, Patent DE 10 2013 204 815 A1 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 SiF4 concentration in silica glass (gray curve) and the corresponding change in refractive index (black curve).
Fig. 2
Fig. 2 Refractive index change achieved and the corresponding SiF4 concentration depending on the F-containing precursor.
Fig. 3
Fig. 3 Refractive index profile (RIP) of fluorinated silica glass samples fabricated under the same temperature but specific additional conditions: black curve – shorter fluorination time, no SiF4 preload; dark gray curve – supplementary O2, SiF4 preload; gray curve – supplementary N2, no O2, SiF4 preload; light gray curve – no carrier gas, SiF4 preload. The depicted Δn is related to undoped silica glass.
Fig. 4
Fig. 4 Optical loss of an unstructured fiber fabricated from the preform with the parabolic gradient RIP (black curve in Fig. 3). The fiber is directly coated with a low refractive index polymer. The absorptions between 800 nm and 1000 nm and >1400 nm arise from fiber coating absorptions.
Fig. 5
Fig. 5 Al concentration profile before (black solid lines) and after (black dotted lines) LTF for different preset Al levels. It can be observed that the Al concentration in particular changes during the process whereas the fluorine concentration (grey dotted lines) remains nearly constant.
Fig. 6
Fig. 6 a) Refractive index (RI) decrease in different Al-codoped silica glasses by fluorination with SiF4. b) Index decrease depending on the Al-F ratio.
Fig. 7
Fig. 7 Concentration profiles (a, c) and corresponding RIP (b, d) of two fluorinated samples containing comparable Yb2O3 concentrations but different Al2O3 levels (1.7 and 3.1 mol%, respectively). The RIP shows the calculated incremental contribution to the RI change, as well as the calculated and measured RIP of the bulk sample.
Fig. 8
Fig. 8 RIP for 3 mol% of Al2O3 / 0.1 mol% of Yb2O3 codoped silica glass fluorinated under varying (mainly time effected) conditions. The profiles themselves are slightly distorted; the spikes are caused by the measurement technique, in particular in the case of samples that are not completely symmetric.
Fig. 9
Fig. 9 RIP before (gray) and after (black) thermal homogenization of a fluorinated Al/Yb codoped silica glass preform. The non-homogenized sample has still a Suprasil F300 cladding tube as a reference. The index gap to about −3.7*10−3 is caused by the index oil.
Fig. 10
Fig. 10 Optical loss of two multimode fibers with a non-fluorinated (black curve) and a fluorinated (gray curve) core, respectively. Both fiber cores have the same Al/Yb concentration (3 mol% of Al2O3 and 0.1 mol% of Yb2O3) and a Suprasil F300 cladding. Both fibers are also depicted in cross-sectional images (right).
Fig. 11
Fig. 11 Photodarkening (PD) losses depending on time. The fluorinated material (black curve) shows a significantly lower PD loss compared to non-fluorinated doped glass (gray curve) even at slightly lower Yb concentration and a higher Al/Yb ratio. For this investigation, the large core fibers were tapered to reduce the core size to 10 µm.

Tables (4)

Tables Icon

Table 1 Fluorination capability of different gaseous precursors 900°C, 3 h, 20 vol% F-Precursor, 80 vol% of N2, 3 h of Cl2, 1013 mbar (atmospheric pressure)

Tables Icon

Table 2 Fluorination capability depending on the processing temperature (processing time: 3 h)

Tables Icon

Table 3 Fluorination capability under different material pre-treatment conditions 900°C, 3 h, pSiF4 = 1000 mbar, no additional carrier gas

Tables Icon

Table 4 Comparison of two distinguished fluorination processes

Metrics