Abstract

We investigated point defects induced in rad-hard Fluorine-doped optical fibers using both a mixed source of neutrons (fluences from 1015 to 1017 n/cm2) and γ-rays (doses from 0.02 to 2 MGy) and by a γ-ray source (dose up to 10 MGy). By combining several complementary spectroscopic techniques such as radiation-induced attenuation, confocal micro-luminescence, time-resolved photo-luminescence and electron paramagnetic resonance, we evidenced intrinsic and hydrogen-related defects. The comparison between the two irradiation sources highlights close similarities among the spectroscopic properties of the induced defects and the linear correlation of their concentration up to 1016 n/cm2. These results are interpreted on the basis of the generation processes of defects from precursors sites, that are common to both γ-rays and neutrons. In contrast, the highest neutron fluence (1017 n/cm2) causes peculiar effects, such as the growth of a photoluminescence and variations of the spectral and decay properties of the emission related with nonbridging oxygen hole centers, that are likely due to silica network modification.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Origin of the visible absorption in radiation-resistant optical fibers

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino
Opt. Mater. Express 3(10) 1769-1776 (2013)

X-ray irradiation effects on fluorine-doped germanosilicate optical fibers

D. Di Francesca, A. Boukenter, S. Agnello, S. Girard, A. Alessi, P. Paillet, C. Marcandella, N. Richard, F.M. Gelardi, and Y. Ouerdane
Opt. Mater. Express 4(8) 1683-1695 (2014)

Twofold coordinated Ge defects induced by gamma-ray irradiation in Ge-doped SiO2

A. Alessi, S. Agnello, F. M. Gelardi, S. Grandi, A. Magistris, and R. Boscaino
Opt. Express 16(7) 4895-4900 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
    [Crossref]
  2. L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
    [Crossref]
  3. G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
    [Crossref]
  4. B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
    [Crossref]
  5. A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
    [Crossref]
  6. A. A. Witteles, “Neutron radiation effects on MOSFETs: theory and experiment”, IEEE Trans. Nucl. Sci. 15(6), 126–132 (1968).
    [Crossref]
  7. S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
    [Crossref]
  8. P.V. Chernov, “Spectroscopic manifestations of self-trapped holes in silica,” Phys. Stat. Sol. B115, 663–675 (1989).
  9. E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
    [Crossref]
  10. L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
    [Crossref]
  11. L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
    [Crossref]
  12. M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69, 153201 (2004).
    [Crossref]
  13. P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
    [Crossref]
  14. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [Crossref]
  15. R. A. Weeks, “Paramagnetic resonance of lattice defects in irradiated Quartz,” J. Appl. Phys. 27, 1376–1381 (1956).
    [Crossref]
  16. T.-E. Tsai and D.L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” J. Non-Cryst. Solids 91 (2), 170–179 (1987).
    [Crossref]
  17. E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
    [Crossref]
  18. M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
    [Crossref]
  19. K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
    [Crossref] [PubMed]
  20. L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
    [Crossref]
  21. L. Skuja, “Optical properties of defects in silica,” in Defects in SiO2 and related dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, eds. (Kluwer Academic Publishers, 2000).
  22. M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
    [Crossref]
  23. H. Imai and H. Hirashima, “Intrinsic and extrinsic defect formation in silica glasses by radiation,” J. Non-Cryst. Solids 179, 202–213 (1994).
    [Crossref]
  24. H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
    [Crossref]
  25. F. Messina and M. Cannas, “In situ observation of the generation and annealing kinetics of E’ centres induced in amorphous SiO2 by 4.7 eV laser irradiation,” J. Phys.: Condens. Matter 17, 3837–3842 (2005).
  26. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
    [Crossref] [PubMed]
  27. L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
    [Crossref]
  28. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
    [Crossref] [PubMed]
  29. B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
    [Crossref]
  30. M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
    [Crossref]
  31. L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
    [Crossref]

2013 (3)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

2008 (2)

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
[Crossref]

2007 (2)

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

2006 (1)

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

2005 (3)

F. Messina and M. Cannas, “In situ observation of the generation and annealing kinetics of E’ centres induced in amorphous SiO2 by 4.7 eV laser irradiation,” J. Phys.: Condens. Matter 17, 3837–3842 (2005).

P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
[Crossref]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

2004 (2)

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69, 153201 (2004).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

2003 (1)

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

2001 (3)

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

2000 (1)

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

1995 (1)

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
[Crossref]

1994 (1)

H. Imai and H. Hirashima, “Intrinsic and extrinsic defect formation in silica glasses by radiation,” J. Non-Cryst. Solids 179, 202–213 (1994).
[Crossref]

1993 (1)

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

1990 (1)

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

1989 (1)

P.V. Chernov, “Spectroscopic manifestations of self-trapped holes in silica,” Phys. Stat. Sol. B115, 663–675 (1989).

1987 (1)

T.-E. Tsai and D.L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” J. Non-Cryst. Solids 91 (2), 170–179 (1987).
[Crossref]

1984 (1)

L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

1979 (2)

E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
[Crossref]

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

1968 (1)

A. A. Witteles, “Neutron radiation effects on MOSFETs: theory and experiment”, IEEE Trans. Nucl. Sci. 15(6), 126–132 (1968).
[Crossref]

1956 (1)

R. A. Weeks, “Paramagnetic resonance of lattice defects in irradiated Quartz,” J. Appl. Phys. 27, 1376–1381 (1956).
[Crossref]

Achten, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Agnello, S.

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

Alessi, A.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

Berghmans, F.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

Boizot, B.

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

Borgermans, P.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

Boscaino, R.

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

Bosselaar, L.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

Boukenter, A.

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

Bredol, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

Brichard, B.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

Cannas, M.

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
[Crossref]

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

F. Messina and M. Cannas, “In situ observation of the generation and annealing kinetics of E’ centres induced in amorphous SiO2 by 4.7 eV laser irradiation,” J. Phys.: Condens. Matter 17, 3837–3842 (2005).

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69, 153201 (2004).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

Chernov, P.V.

P.V. Chernov, “Spectroscopic manifestations of self-trapped holes in silica,” Phys. Stat. Sol. B115, 663–675 (1989).

Cheymol, G.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

Decréton, M.

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

Fernandez Fernandez, A.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

Flammer, I.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Friebele, E. J.

E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
[Crossref]

Friebele, E.J.

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

Gelardi, F. M.

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

Gelardi, F.M.

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69, 153201 (2004).
[Crossref]

Girard, S.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Gooijer, F.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Griscom, D. L.

E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
[Crossref]

Griscom, D.L.

T.-E. Tsai and D.L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” J. Non-Cryst. Solids 91 (2), 170–179 (1987).
[Crossref]

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

Gusarov, A.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Hama, Y.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

Hirano, M.

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Hirashima, H.

H. Imai and H. Hirashima, “Intrinsic and extrinsic defect formation in silica glasses by radiation,” J. Non-Cryst. Solids 179, 202–213 (1994).
[Crossref]

Hosono, H.

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Hutjens, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

Ibarra, A.

P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
[Crossref]

Ikuta, Y.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Illas, F.

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

Imai, H.

H. Imai and H. Hirashima, “Intrinsic and extrinsic defect formation in silica glasses by radiation,” J. Non-Cryst. Solids 179, 202–213 (1994).
[Crossref]

Kajihara, K.

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kinoshita, T.

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

Kuhnhenn, J.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Kuyt, G.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Lammens, K.

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

Leers, D.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

León, M.

P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
[Crossref]

Long, H.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

Lopez, N.

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

Macé, J.-R.

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

Marcandella, C.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Martín, P.

P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
[Crossref]

Messina, F.

F. Messina and M. Cannas, “In situ observation of the generation and annealing kinetics of E’ centres induced in amorphous SiO2 by 4.7 eV laser irradiation,” J. Phys.: Condens. Matter 17, 3837–3842 (2005).

Morana, A.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

Nakamura, R.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

Nishikawa, H.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

Ohki, Y.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

Ooms, H.

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

Ouerdane, Y.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

Pacchioni, G.

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

Pakovich, A. B.

L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Parlato, A.

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

Périsse, J.

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

Regnier, E.

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

Sigel, G.H.

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

Skuja, L.

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
[Crossref]

L. Skuja, “Optical properties of defects in silica,” in Defects in SiO2 and related dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, eds. (Kluwer Academic Publishers, 2000).

Skuja, L. N.

L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Stapelbroek, M.

E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
[Crossref]

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

Streletsky, A. N.

L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Suzuki, T.

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
[Crossref]

Tanimura, K.

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
[Crossref]

Tsai, T.-E.

T.-E. Tsai and D.L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” J. Non-Cryst. Solids 91 (2), 170–179 (1987).
[Crossref]

Vaccaro, L.

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
[Crossref]

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

Van Uffelen, M.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Villard, J. F.

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

Vitiello, M.

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

Weeks, R. A.

R. A. Weeks, “Paramagnetic resonance of lattice defects in irradiated Quartz,” J. Appl. Phys. 27, 1376–1381 (1956).
[Crossref]

Witteles, A. A.

A. A. Witteles, “Neutron radiation effects on MOSFETs: theory and experiment”, IEEE Trans. Nucl. Sci. 15(6), 126–132 (1968).
[Crossref]

IEEE Trans. Nucl. Sci. (6)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008).
[Crossref]

B. Brichard, A. Fernandez Fernandez, H. Ooms, P. Borgermans, and F. Berghmans, “Dependence of the POR and NBOHC defects as function of the dose in hydrogen-treated and untreated KU1 glass fibers,” IEEE Trans. Nucl. Sci. 50(6), 2024–2029 (2003).
[Crossref]

A. A. Witteles, “Neutron radiation effects on MOSFETs: theory and experiment”, IEEE Trans. Nucl. Sci. 15(6), 126–132 (1968).
[Crossref]

E. Regnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1117 (2007).
[Crossref]

B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens, and M. Decréton, “Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field,” IEEE Trans. Nucl. Sci. 48(6), 2069–2073 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

K. Kajihara, M. Hirano, L. Skuja, and H. Hosono, “Role of interstitial voids in oxides on formation and stabilization of reactive radicals: interstitial HO2 radicals in F2-laser-irradiated amorphous SiO2,” J. Am. Chem. Soc. 128, 5371–5374 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

L. Vaccaro, M. Cannas, S. Girard, A. Alessi, A. Morana, A. Boukenter, Y. Ouerdane, and R. Boscaino, “Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence,” J. Appl. Phys. 113, 193107 (2013).
[Crossref]

R. A. Weeks, “Paramagnetic resonance of lattice defects in irradiated Quartz,” J. Appl. Phys. 27, 1376–1381 (1956).
[Crossref]

J. Lightw. Technol. (1)

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightw. Technol. 8(10), 1536–1539 (1990).
[Crossref]

J. Non-Cryst. Solids (5)

H. Imai and H. Hirashima, “Intrinsic and extrinsic defect formation in silica glasses by radiation,” J. Non-Cryst. Solids 179, 202–213 (1994).
[Crossref]

L. Vaccaro, M. Cannas, B. Boizot, and A. Parlato, “Radiation induced generation of non-bridging oxygen hole center in silica: intrinsic and extrinsic processes,” J. Non-Cryst. Solids 353, 586–589 (2007).
[Crossref]

T.-E. Tsai and D.L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” J. Non-Cryst. Solids 91 (2), 170–179 (1987).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, “Oxygen-associated trapped-hole centers in high-purity fused silica,” J. Non-Cryst. Solids 32(1–3), 313–326 (1979).
[Crossref]

J. Phys. Chem. A (1)

M. Vitiello, N. Lopez, F. Illas, and G. Pacchioni, “H2 crackong at SiO2 defect centers,” J. Phys. Chem. A 2000(104), 4674–4684 (2000).
[Crossref]

J. Phys.: Condens. Matter (1)

F. Messina and M. Cannas, “In situ observation of the generation and annealing kinetics of E’ centres induced in amorphous SiO2 by 4.7 eV laser irradiation,” J. Phys.: Condens. Matter 17, 3837–3842 (2005).

Opt. Mat. Express (1)

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mat. Express 3(10), 1769–1776 (2013).
[Crossref]

Phys. Rev. B (4)

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser spectroscopy studies of the intrinsic 1.9 eV luminescence center in glassy SiO2,” Phys. Rev. B 52(21), 15208–15216 (1995).
[Crossref]

S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation,” Phys. Rev. B 64(17), 174423 (2001).
[Crossref]

M. Cannas and F.M. Gelardi, “Vacuum ultraviolet excitation of the 1.9 eV emission band related to nonbridging oxygen hole centers in silica,” Phys. Rev. B 69, 153201 (2004).
[Crossref]

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Correlation of preexisting diamagnetic defect centers with induced paramagnetic defect centers by ultraviolet or vacuum-ultraviolet photons in high-purity silica glasses,” Phys. Rev. B 48(21), 15584–15594 (1993).
[Crossref]

Phys. Rev. Lett. (3)

H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87(17), 175501 (2001).
[Crossref] [PubMed]

K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Role of mobile interstitial oxygen atoms in defect processes in oxides: interconversion between oxygen-associated defects in SiO2 glass,” Phys. Rev. Lett. 92(1), 015504 (2004).
[Crossref] [PubMed]

E. J. Friebele, D. L. Griscom, and M. Stapelbroek, “Fundamental defect centers in Glass: the peroxy radical in irradiated, high-purity, fused silica,” Phys. Rev. Lett. 42(20), 1346–1349 (1979).
[Crossref]

Phys. Stat. Sol. (3)

P. Martín, M. León, and A. Ibarra, “Photoluminescence in neutron irradiated fused silica,” Phys. Stat. Sol. C2(1), 624–628 (2005).
[Crossref]

P.V. Chernov, “Spectroscopic manifestations of self-trapped holes in silica,” Phys. Stat. Sol. B115, 663–675 (1989).

L. Skuja, M. Hirano, H. Hosono, and K. Kajihara, “Defects in oxide glasses,” Phys. Stat. Sol. C2(1), 15–24 (2005).
[Crossref]

Solid State Commun. (2)

L. Vaccaro, M. Cannas, and R. Boscaino, “Luminescence features of nonbridging oxygen hole centres in silica probed by site-selective excitation with tunable laser,” Solid State Commun. 146, 148–151 (2008).
[Crossref]

L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Commun. 50(12), 1069–1072 (1984).
[Crossref]

Other (1)

L. Skuja, “Optical properties of defects in silica,” in Defects in SiO2 and related dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, eds. (Kluwer Academic Publishers, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 RIA spectra of the multimode F-doped fiber irradiated at (a) three neutron fluencies and (b) three γ-ray doses.
Fig. 2
Fig. 2 Normalized absorption band at 2 eV of two samples irradiated at the neutron fluence of 1017 n/cm2 (grey line) and at the γ-dose of 3 MGy (black line). These bands were obtained by subtracting the UV contribution to the RIA curves.
Fig. 3
Fig. 3 PL spectra emitted from the core center of the fiber irradiated at (a) the neutron fluence of 1017 n/cm2 and (b) the γ-dose of 10 MGy; excitation at 3.82 eV (325 nm).
Fig. 4
Fig. 4 PL band profiles along the diameter for the fiber irradiated at 1017 n/cm2 (empty circles) and at 10 MGy (full circles): (a) emission at 1.9 eV (650 nm) under excitation at 1.96 eV (633 nm) and F-profile (full red squares); (b) PL intensity at 2.3 eV (540 nm) under excitation at 3.82 eV (325 nm). The inset shows the peak energy of the green band as a function of the distance from the fiber center.
Fig. 5
Fig. 5 (a) Semilog plot of the PL decay measured at 1.9 eV (650 nm) in the samples irradiated at 1017 n/cm2 (empty circles) and at 10 MGy (full circles), under excitation at 4.77 eV (260 nm). The dashed lines represent the best-fitting stretched exponential functions. (b) Semilog plot of the PL decay excited at 4.43 eV (280 nm) in the neutron-irradiated fiber at the fluence of 1017 n/cm2 and measured at three different energies: 2.28 eV (545 nm –empty triangles), 2.38 eV (521 nm - full circles) and 2.51 eV (494 nm - empty circles).
Fig. 6
Fig. 6 Normalized time-resolved PL spectra of the sample irradiated at 1017 n/cm2 measured under laser excitation at 5.06 eV (245 nm) in different time windows. For the fast component peaked at 4.34 eV (dashed line), TD=1 ns and Δt=50 ns. For the slow component peaked at 2.64 eV (continuous line), TD=0.5 ms and Δt=500 ms.
Fig. 7
Fig. 7 EPR spectra recorded in the 10 MGy irradiated sample with different values of microwave power (P) and modulation amplitude (Hm) to put in evidence the different defects. (a) Spectrum of the E’ center acquired at RT, with P = 0.8 μW and Hm = 0.1 G. (b) Doublets of 74 G typical of the H(I) centers acquired at RT with P = 0.2 mW and Hm = 1 G. (c) Oxygen-related defect signals recorded at low temperature, 77 K, with P = 1 mW and Hm = 0.6 G.
Fig. 8
Fig. 8 Defects concentration as a function of (a) the neutron fluence and (b) the γ-dose: E’ centers - full squares; H(I) centers - empty circles; NBOHCs - empty diamonds; PORs - full triangles.
Fig. 9
Fig. 9 Correlation between the values of the NBOHC concentration in the core, calculated by the RIA at 2 eV through equ. 1, as a function of those obtained by combining EPR and CML measurements. The dashed line represents the linear best fitting obtained without taking into account the point corresponding to the highest neutron fluence (the correlation coefficient is R = 0.968).
Fig. 10
Fig. 10 Concentration of NBOHCs (empty diamonds) and PORs (full triangles), as a function of that of E’ centers.

Tables (2)

Tables Icon

Table 1 Parameters characterizing the PL decay of the NBOHCs.

Tables Icon

Table 2 List of all the defects detected in the samples irradiated at the highest doses (γ-dose of 10 MGy and neutron fluence of 1017 n/cm2). The spectroscopic characteristics are also reported here (τ indicates the PL lifetime), whereas the concentration values are calculated with the EPR technique.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N core OA = 3.3 × 10 16 × OA ( 2 e V ) [ cm 3 dB / m 1 ]

Metrics