Abstract

Via surface plasmon enhanced light transmission through bilayer metallic nanowire gratings (BMNGs), three pitches of BMNGs with red, green and blue colors are respectively designed and fabricated. The color gamut can reach 89% NTSC in CIE 1931 UCS with optimized design. Furthermore, by utilizing the character of surface plasmon resonance (SPR), which is sensitive to ambient refractive index, the brightness can be tuned to dark by changing the ambient materials. The tunability was demonstrated on a 520 nm gratings in both simulation and experiment, and the obtained contrast ratio is over 120:1. These characteristics indicated a tunable spectral filter based on surface plasmon resonance, promising for a bistable full-color-capability electronic paper display.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer

Haiwei Chen, Ruidong Zhu, Guanjun Tan, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(1) 102-111 (2017)

Wide color gamut LCD with a quantum dot backlight

Zhenyue Luo, Yuan Chen, and Shin-Tson Wu
Opt. Express 21(22) 26269-26284 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. R. M. Roth, N. C. Panoiu, M. M. Adams, J. I. Dadap, and R. M. Osgood., “Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures,” Opt. Lett. 32(23), 3414–3416 (2007).
    [Crossref] [PubMed]
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  4. Q. Fan, J. Cao, Y. Liu, B. Yao, and Q. Mao, “Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method,” Appl. Opt. 52(25), 6163–6169 (2013).
    [Crossref] [PubMed]
  5. A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, P. Adam, K. Chadt, J. Homola, and P. De Natale, “Surface plasmon resonance optical cavity enhanced refractive index sensing,” Opt. Lett. 38(11), 1951–1953 (2013).
    [Crossref] [PubMed]
  6. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [Crossref] [PubMed]
  7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  8. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008).
    [Crossref] [PubMed]
  9. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  10. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref] [PubMed]
  11. A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
    [Crossref]
  12. Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
    [Crossref]
  13. B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
    [Crossref]
  14. C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6(1), 34–39 (2001).
    [Crossref]
  15. H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
    [Crossref]
  16. Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).
  17. Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
    [Crossref]
  18. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [Crossref]
  19. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
    [Crossref] [PubMed]
  20. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  21. W. M. B. M. Yunus and A. B. A. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27(16), 3341–3343 (1988).
    [Crossref] [PubMed]
  22. K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
    [Crossref] [PubMed]

2013 (4)

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, P. Adam, K. Chadt, J. Homola, and P. De Natale, “Surface plasmon resonance optical cavity enhanced refractive index sensing,” Opt. Lett. 38(11), 1951–1953 (2013).
[Crossref] [PubMed]

Q. Fan, J. Cao, Y. Liu, B. Yao, and Q. Mao, “Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method,” Appl. Opt. 52(25), 6163–6169 (2013).
[Crossref] [PubMed]

2012 (1)

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

2011 (1)

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

2010 (2)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

2008 (2)

2007 (3)

2005 (2)

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

2001 (1)

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6(1), 34–39 (2001).
[Crossref]

1998 (1)

1988 (1)

Adam, P.

Adams, M. M.

Avino, S.

Barbastathis, G.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berge, B.

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6(1), 34–39 (2001).
[Crossref]

Cao, J.

Casalino, M.

Chadt, K.

Chang, C. H.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Chen, S. J.

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Cheng, W.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Cheung, H. W.

Chilkoti, A.

Choi, H. J.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Cohen, R. E.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Coppola, G.

Curry, A.

Dadap, J. I.

De Natale, P.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Djurišic, A. B.

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Elazar, J. M.

Fan, Q.

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Gagliardi, G.

Giorgini, A.

Guo, L. D.

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

Heikenfeld, J.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

Heikenfelda, J.

B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
[Crossref]

Homola, J.

Hong, M. H.

Hor, T. S. A.

Huang, Z. Q.

Iodice, M.

Kang, H. S.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Kim, S. H.

Lao, Y.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
[Crossref]

Lee, H. S.

Lee, K. D.

Lee, S. S.

Liu, C. H.

Liu, D. H.

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Liu, Y.

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Majewski, M. L.

Malara, P.

Mao, Q.

McKinley, G. H.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Mugele, F.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Nusz, G.

Osgood, R. M.

Panoiu, N. C.

Park, K. C.

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Quilliet, C.

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6(1), 34–39 (2001).
[Crossref]

Rahman, A. B. A.

Rakic, A. D.

Roth, R. M.

Schultz, A.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Shieh, H. P.

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Steckl, A. J.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Sun, B.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
[Crossref]

Sun, S.

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Tan, L. S.

Wax, A.

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yao, B.

Ye, Z. C.

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Yoon, Y. T.

You, H.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Yunus, W. M. B. M.

Zhang, F.

Zheng, J.

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Zhou, K.

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
[Crossref]

ACS Nano (1)

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

B. Sun, K. Zhou, Y. Lao, and J. Heikenfelda, “Scalable fabrication of electrowetting displays with self-assembled oil dosing,” Appl. Phys. Lett. 91(1), 011106 (2007).
[Crossref]

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6(1), 34–39 (2001).
[Crossref]

J. Disp. Technol. (2)

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 contrast tatio transmissive electrowetting displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Y. Lao, B. Sun, K. Zhou, and J. Heikenfeld, “Ultra-High transmission electrowetting displays enabled by integrated reflectors,” J. Disp. Technol. 4(2), 120–122 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

J. Sel. Top. Quant. Electron. (1)

Z. C. Ye, J. Zheng, S. Sun, L. D. Guo, and H. P. Shieh, “Compact transreflective color filters and polarizers by bilayer metallic nanowire gratings on flexible substrates,” J. Sel. Top. Quant. Electron. 19(3), 4800205 (2013).
[Crossref]

Nano Lett. (1)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Nat. Commun. (1)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Nature (2)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Plasmonics (1)

Z. C. Ye, J. Zheng, S. Sun, S. J. Chen, and D. H. Liu, “Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances,” Plasmonics 8, 555–559 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the bilayer aluminum nanowire grating and the SPR therein. (b) The simulated transmissive spectra of gratings with the pitches of 420 nm, 520 nm and 650 nm in the ambient of air. (c) The color gamut of the device according to simulated transmission spectra.
Fig. 2
Fig. 2 (a) The calculated curves of surface plasmon resonance wavelengths with the ambient refractive indexes respectively. (b) Simulated field intensity distribution of Hy component of 546nm TM light via Rigorous Coupled Wave Analysis (RSoft, DiffractMODTM). The white lines limn the outline of the gratings with pitch of 520nm. (c) Simulated transmission spectra of the 520 nm gratings with the ambient medium changed from air to 60% sucrose solution.
Fig. 3
Fig. 3 (a) Fabrication process of the bilayer Al gratings. (b) The setup of laser interference lithography. (c) SEM photos of the top and side views of the Al gratings with the pitch of 650 nm, 520 nm, and 420 nm, respectively.
Fig. 4
Fig. 4 (a) The measured transmissive spectra of BMNGs with pitches of 420 nm, 520 nm and 650 nm in air. (b) The color gamut of the full color display based on BMNGs, appended with experimental color pictures, respectively.
Fig. 5
Fig. 5 (a) The brief schematic of the measurement system. (b) Optical performance of the 520 nm gratings with the ambient medium changing from air to 60% sucrose solution.
Fig. 6
Fig. 6 The cross-sectional schematic of the proposed transmissive EWD cell. The EWD cell in (a) bright state without applying voltage and (b) dark state with applied DC-voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ + n G = k s p = k 0 ε m n a 2 ε m + n a 2
Λ= λ 2sinθ

Metrics