Abstract

The strain-activated tuning of a continuous wave Cr4+:Y3Al5O12 crystal-core glass-clad hybrid Raman fiber laser with low-threshold operation and a Cu-Al-alloy packaging was demonstrated. The cascaded Raman resonating scheme significantly reduces the effective Raman pump intensity required to reach the stimulated Raman threshold. This reduction in threshold intensity leads to continuous wave low-threshold lasing with high quantum efficiency. In addition, we demonstrate that such strain-dependent Raman tuning is useful for highly sensitive thermal and stress sensors, with a temperature sensitivity of 0.273 nm/°C and a temperature-strain crosstalk of 530 με/°C. These sensitivities are at least one order of magnitude higher than the sensitivities achieved by conventional silica fiber-based thermal sensors and polymer fiber-based stress sensors. The large temperature-dependent Raman shift was achieved through the enhanced piezospectroscopic effect of the fiber packaged with the Cu-Al alloy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber

Marta S. Ferreira, Jörg Bierlich, Jens Kobelke, Kay Schuster, José L. Santos, and Orlando Frazão
Opt. Express 20(20) 21946-21952 (2012)

High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer

Shen Liu, Yiping Wang, Changrui Liao, Guanjun Wang, Zhengyong Li, Qiao Wang, Jiangtao Zhou, Kaiming Yang, Xiaoyong Zhong, Jing Zhao, and Jian Tang
Opt. Lett. 39(7) 2121-2124 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1,” J. Opt. Soc. Am. B 26, 559–563 (2009).
  2. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
    [Crossref]
  3. M. A. Henesian, M. D. Duncan, R. L. Byer, and A. D. May, “Absolute Raman frequency measurement of the Q(2) line in D2 using cw CARS,” Opt. Lett. 1(5), 149–151 (1977).
    [Crossref] [PubMed]
  4. C. K. N. Patel, “Tunable spin-flip Raman laser at magnetic field as low as 400 G,” Appl. Phys. Lett. 19(10), 400–403 (1971).
    [Crossref]
  5. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 1(3), 96–97 (1977).
    [Crossref] [PubMed]
  6. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25(7), 472–474 (2000).
    [Crossref] [PubMed]
  7. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref] [PubMed]
  8. V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded raman fiber lasers,” Opt. Express 21(6), 7148–7155 (2013).
    [Crossref] [PubMed]
  9. S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
    [Crossref] [PubMed]
  10. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
    [Crossref] [PubMed]
  11. M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
    [Crossref] [PubMed]
  12. H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [Crossref]
  13. C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [PubMed]
  14. C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
    [Crossref] [PubMed]
  15. J. Lee, J. Kim, Y. G. Han, S. H. Kim, and S. Lee, “Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long-distance remote sensing applications,” Opt. Express 12(8), 1747–1752 (2004).
    [Crossref] [PubMed]
  16. J. H. Lee, Y. Chang, Y. G. Han, H. Chung, S. Kim, and S. Lee, “Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating,” Opt. Express 12(15), 3515–3520 (2004).
    [Crossref] [PubMed]
  17. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
    [PubMed]
  18. Z. Liu, C. Wu, M. L. V. Tse, C. Lu, and H. Y. Tam, “Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination,” Opt. Lett. 38(9), 1385–1387 (2013).
    [Crossref] [PubMed]
  19. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
    [Crossref] [PubMed]
  20. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, “Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers,” Opt. Express 19(15), 13880–13891 (2011).
    [Crossref] [PubMed]
  21. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [PubMed]
  22. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
    [PubMed]
  23. C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
    [Crossref] [PubMed]
  24. C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
    [Crossref] [PubMed]
  25. C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
    [Crossref]
  26. J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
    [Crossref]
  27. C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
    [Crossref]
  28. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  29. J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
    [Crossref]
  30. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  31. C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
    [Crossref] [PubMed]
  32. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-Clad Single-Crystal Germanium Optical Fiber,” Opt. Express 17(10), 8029–8035 (2009).
    [Crossref] [PubMed]
  33. P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
    [Crossref] [PubMed]
  34. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [Crossref] [PubMed]
  35. J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
    [Crossref]
  36. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, “Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings,” J. Lightwave Technol. 24(12), 5039–5043 (2006).
    [Crossref]
  37. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [Crossref] [PubMed]
  38. S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express 15(24), 16035–16043 (2007).
    [Crossref] [PubMed]
  39. V. K. Raju and P. J. Reddy, “Third-order elastic moduli of polycrystalline Al-Mg and Al-Cu alloys,” J. Phys. D Appl. Phys. 14(1), 65–70 (1981).
    [Crossref]
  40. W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” J. Phys. Condens. Matter 7(43), 8351–8356 (1995).
    [Crossref]
  41. T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
    [Crossref]

2014 (2)

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (3)

H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
[PubMed]

J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
[PubMed]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

2011 (2)

2010 (1)

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

2007 (4)

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express 15(24), 16035–16043 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
[Crossref]

2004 (2)

2003 (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1995 (1)

W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” J. Phys. Condens. Matter 7(43), 8351–8356 (1995).
[Crossref]

1994 (1)

T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
[Crossref]

1981 (1)

V. K. Raju and P. J. Reddy, “Third-order elastic moduli of polycrystalline Al-Mg and Al-Cu alloys,” J. Phys. D Appl. Phys. 14(1), 65–70 (1981).
[Crossref]

1977 (2)

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1971 (1)

C. K. N. Patel, “Tunable spin-flip Raman laser at magnetic field as low as 400 G,” Appl. Phys. Lett. 19(10), 400–403 (1971).
[Crossref]

1968 (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Albert, J.

Amann, M. C.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Bae, H.

Ballato, J.

Bauman, R. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Bélanger, E.

Belkin, M. A.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Belyanin, A.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Bernier, M.

Bigot, L.

Boehm, G.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Bouteiller, J.-C.

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

Bouwmans, G.

Byer, R. L.

Capasso, F.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Carlsten, J. L.

Chang, I. F.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Chang, Y.

Chaplot, S. L.

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

Chen, C.

Chen, M. H.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Chen, M. Y.

Cheng, C. T.

Cheng, N. C.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

Cho, A. Y.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Choudhury, N.

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Chung, H.

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Cubukcu, E.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Daneu, J. L.

Demmerle, F.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Déry, B.

Duncan, M. D.

Fan, T. Y.

Faucher, D.

Fleureau, A.

Foy, P.

French, W. G.

Galkovsky, L.

Gao, W. T.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Gao, Z.

Goel, P.

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

Han, Y. G.

Hawkins, T.

Headley, C. E.

Henesian, M. A.

Herek, J. L.

Hon, N. K.

Hsu, K. Y.

Huang, C. M.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Huang, J.

Huang, K. Y.

Huang, S. L.

Huang, S. Y.

Hurrell, J. P.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Ishizuka, M.

T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
[Crossref]

Jakobsen, D.

Jalali, B.

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jheng, D. Y.

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
[Crossref] [PubMed]

Ji, K. D.

Jiang, A.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Jiang, Y.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Joly, N. Y.

Jung, S.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

Kagaya, H. M.

T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
[Crossref]

Kaur, A.

Ke, C. P.

Kim, J.

Kim, S.

Kim, S. H.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Korterik, J. P.

Kuo, Y. H.

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Lai, C. C.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
[Crossref] [PubMed]

C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
[PubMed]

C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
[Crossref] [PubMed]

Lan, X.

Laronche, A.

Lee, J.

Lee, J. H.

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Lee, S.

Lempereur, S.

Li, Y.

Li, Y. S.

Liang, W.

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Lin, C.

Lin, M. Y.

Lin, S. R.

Lin, Z. W.

Liu, N.

Liu, S. K.

Liu, Z.

Lo, C. Y.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Lu, C.

Lu, P.

Ma, Y. R.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Malone, T. G.

May, A. D.

McMillen, C.

Mélin, G.

Meng, L. S.

Mitra, S. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Mittal, R.

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

Nguyen, D. H.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Nichsolson, J. W.

Offerhaus, H. L.

Palsdottir, B.

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Patel, C. K. N.

C. K. N. Patel, “Tunable spin-flip Raman laser at magnetic field as low as 400 G,” Appl. Phys. Lett. 19(10), 400–403 (1971).
[Crossref]

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Popov, S. V.

J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
[Crossref]

Porto, S. P. S.

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Postma, S.

Quiquempois, Y.

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Raju, V. K.

V. K. Raju and P. J. Reddy, “Third-order elastic moduli of polycrystalline Al-Mg and Al-Cu alloys,” J. Phys. D Appl. Phys. 14(1), 65–70 (1981).
[Crossref]

Randoux, S.

Reddy, P. J.

V. K. Raju and P. J. Reddy, “Third-order elastic moduli of polycrystalline Al-Mg and Al-Cu alloys,” J. Phys. D Appl. Phys. 14(1), 65–70 (1981).
[Crossref]

Repasky, K. S.

Rice, R.

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Roos, P. A.

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shr, R. C.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Sivco, D. L.

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Soma, T.

T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Stolen, R.

Stolen, R. H.

Supradeepa, V. R.

Suret, P.

Tam, H. Y.

Taylor, J. R.

J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
[Crossref]

Tjiu, J. W.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

Travers, J. C.

J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
[Crossref]

Troccoli, M.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

Tsai, C. N.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Tsai, H. J.

Tse, M. L. V.

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Vallée, R.

van Rhijn, A. C. W.

Vijayraghavan, K.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Wang, C. K.

Wang, D. J.

Wang, H.

Wang, S. C.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Wang, X.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

Wang, Y.

Wei, T.

Wu, C.

Wynne, R.

Xiao, H.

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Yan, M. F.

Yazgan-Kokuoz, B.

Yeh, P.

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Yeh, P. S.

Yu, M.

Yuan, L.

Zhang, Y.

Zheng, W. C.

W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” J. Phys. Condens. Matter 7(43), 8351–8356 (1995).
[Crossref]

Zhuo, W. J.

ACS Appl. Mater. Interfaces (1)

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. C. Travers, S. V. Popov, and J. R. Taylor, “Efficient continuous-wave holey fiber Raman laser,” Appl. Phys. Lett. 87(3), 031106 (2005).
[Crossref]

C. K. N. Patel, “Tunable spin-flip Raman laser at magnetic field as low as 400 G,” Appl. Phys. Lett. 19(10), 400–403 (1971).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crcystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

J. Phys. Condens. Matter (2)

P. Goel, R. Mittal, N. Choudhury, and S. L. Chaplot, “Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12,” J. Phys. Condens. Matter 22(6), 065401 (2010).
[Crossref] [PubMed]

W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” J. Phys. Condens. Matter 7(43), 8351–8356 (1995).
[Crossref]

J. Phys. D Appl. Phys. (1)

V. K. Raju and P. J. Reddy, “Third-order elastic moduli of polycrystalline Al-Mg and Al-Cu alloys,” J. Phys. D Appl. Phys. 14(1), 65–70 (1981).
[Crossref]

Nat. Commun. (2)

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang, M. Troccoli, and M. A. Belkin, “Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources,” Nat. Commun. 5, 4267 (2014).
[Crossref] [PubMed]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4, 2021 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y. H. Kuo, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Nature (2)

M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, “Raman injection laser,” Nature 433(7028), 845–848 (2005).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Opt. Express (9)

V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded raman fiber lasers,” Opt. Express 21(6), 7148–7155 (2013).
[Crossref] [PubMed]

J. Lee, J. Kim, Y. G. Han, S. H. Kim, and S. Lee, “Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long-distance remote sensing applications,” Opt. Express 12(8), 1747–1752 (2004).
[Crossref] [PubMed]

J. H. Lee, Y. Chang, Y. G. Han, H. Chung, S. Kim, and S. Lee, “Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating,” Opt. Express 12(15), 3515–3520 (2004).
[Crossref] [PubMed]

H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
[PubMed]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
[Crossref] [PubMed]

N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, “Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers,” Opt. Express 19(15), 13880–13891 (2011).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-Clad Single-Crystal Germanium Optical Fiber,” Opt. Express 17(10), 8029–8035 (2009).
[Crossref] [PubMed]

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express 15(24), 16035–16043 (2007).
[Crossref] [PubMed]

Opt. Lett. (9)

C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
[PubMed]

C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
[Crossref] [PubMed]

C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
[Crossref] [PubMed]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[PubMed]

J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
[PubMed]

Z. Liu, C. Wu, M. L. V. Tse, C. Lu, and H. Y. Tam, “Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination,” Opt. Lett. 38(9), 1385–1387 (2013).
[Crossref] [PubMed]

M. A. Henesian, M. D. Duncan, R. L. Byer, and A. D. May, “Absolute Raman frequency measurement of the Q(2) line in D2 using cw CARS,” Opt. Lett. 1(5), 149–151 (1977).
[Crossref] [PubMed]

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 1(3), 96–97 (1977).
[Crossref] [PubMed]

L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25(7), 472–474 (2000).
[Crossref] [PubMed]

Phys. Rev. (1)

J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173(3), 851–856 (1968).
[Crossref]

Phys. Rev. Lett. (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref] [PubMed]

Phys. Status Solidi (1)

T. Soma, M. Ishizuka, and H. M. Kagaya, “Solid solubility of Cu in Al under pressure and elastic moduli,” Phys. Status Solidi 186(1), 95–100 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic setup of the Raman fiber laser. Insets are photomicrographs of the fiber ends with and without a dielectric coating, showing that the periphery is in good contact with the Cu-Al-alloy packaging. (b) [111]-HRTEM image of the crystalline core. The scale bar is 5 Å. (c) The corresponding selected area electron diffraction pattern of (b).
Fig. 2
Fig. 2 (a) Strain-dependent Raman spectra of Cr4+:YAG in the bulk and fiber forms. (b) Cascaded stimulated Raman generation of the Cu-Al-packaged crystal-core glass-clad hybrid fiber, corresponding to the first Raman shift in (a).
Fig. 3
Fig. 3 Crystalline fiber laser performance with and without the Cu-Al-alloy packaging, indicating the AS Raman laser threshold, marked by the x-intercept of the dashed line.
Fig. 4
Fig. 4 Temperature-dependent stimulated Raman tuning of (a) AS Raman and (b) Raman pump.
Fig. 5
Fig. 5 (a) Nonlinear characteristics of AS Raman spectra at high powers. (b) Close-up view of (a) showing the four-wave mixing characteristics.
Fig. 6
Fig. 6 (a) AS Raman shifts as a function of temperature. A high thermal sensitivity of 0.273 nm/°C and 1.134 cm−1/°C was obtained due to the enhanced piezospectroscopic effect of the fiber laser packaged by the Cu-Al alloy. (b) Estimates of the stress and the corresponding volume change ratio of the Cu-Al alloy with the temperature change. The temperature-strain crosstalk calculated from the linear fit of the volume change ratio is 530 με/°C. These sensitivities are at least one order of magnitude higher than the sensitivities achieved by conventional silica fiber-based thermal sensors and polymer fiber-based stress sensors.

Metrics