Abstract

We demonstrate the dispersion and alignment of gold nanorods in 5CB liquid crystal droplets in silicon oil with a radial director structure. This biphasic system shows that the nanorods are stabilized against phase boundary driven aggregation. The radial alignment of the droplets can be further controlled by electric field. This method is potentially useful for the fabrication of hybrid nanostructured materials, such as plasmonic polymer dispersed liquid crystals and self-assembly-based devices; it could also be extended for use with magnetic, semi-conducting, or up-conversion nanoparticles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment

Qingkun Liu, Nan Wang, Pengxin Chen, Yuan Zhang, and Sailing He
Opt. Mater. Express 3(11) 1918-1924 (2013)

Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

Self-assembly of predesigned optical materials in nematic codispersions of plasmonic nanorods

Ghadah H. Sheetah, Qingkun Liu, and Ivan I. Smalyukh
Opt. Lett. 41(21) 4899-4902 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  4. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  5. J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
    [Crossref]
  6. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
    [Crossref] [PubMed]
  7. M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
    [Crossref] [PubMed]
  8. R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
    [Crossref] [PubMed]
  9. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
    [Crossref] [PubMed]
  10. K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
    [Crossref] [PubMed]
  11. K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
    [Crossref] [PubMed]
  12. G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection,” Opt. Lett. 39(7), 1744–1747 (2014).
    [Crossref] [PubMed]
  13. I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
    [Crossref]
  14. I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
    [Crossref]
  15. M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
    [Crossref] [PubMed]
  16. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
    [Crossref] [PubMed]
  17. H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev. 40(1), 306–319 (2011).
    [Crossref] [PubMed]
  18. Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
    [Crossref]
  19. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
    [Crossref] [PubMed]
  20. S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
    [Crossref]
  21. D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
    [Crossref]
  22. J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
    [Crossref]
  23. G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
    [Crossref] [PubMed]
  24. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [Crossref] [PubMed]
  25. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [Crossref] [PubMed]
  26. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
    [Crossref] [PubMed]
  27. Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
    [Crossref] [PubMed]
  28. M. Humar and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref] [PubMed]
  29. J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
    [Crossref]
  30. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]

2014 (5)

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
[Crossref] [PubMed]

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection,” Opt. Lett. 39(7), 1744–1747 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
[Crossref]

S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
[Crossref]

2011 (4)

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
[Crossref]

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev. 40(1), 306–319 (2011).
[Crossref] [PubMed]

2010 (5)

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref] [PubMed]

M. Humar and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

2009 (4)

K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

2008 (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

2007 (2)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2005 (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

2004 (1)

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

1997 (2)

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

1996 (1)

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Bhatia, S. N.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Bisoyi, H. K.

H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev. 40(1), 306–319 (2011).
[Crossref] [PubMed]

Blaber, M. G.

M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
[Crossref] [PubMed]

Brasselet, E.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Carnie, S.

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Centrone, A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Chan, D. Y. C.

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Chen, P.

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Cui, Y.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Diaz, A.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Drevensek-Olenik, I.

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

Evans, J. S.

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
[Crossref]

Feng, X.

S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
[Crossref]

Francescato, Y.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Gardner, D.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Gardner, D. F.

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Ghosh, M.

K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
[Crossref] [PubMed]

Giannini, V.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Harris, N.

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

Hatton, T. A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

He, S.

Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Hegmann, T.

S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
[Crossref]

Hennig, R. G.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Huang, J.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Humar, M.

M. Humar and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Hur, K.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Jones, M. R.

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Khoo, I. C.

G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, “Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection,” Opt. Lett. 39(7), 1744–1747 (2014).
[Crossref] [PubMed]

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Kumar, S.

H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev. 40(1), 306–319 (2011).
[Crossref] [PubMed]

Lagerwall, J.

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

Lee, B.

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Lee, T.

Letsinger, R. L.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Lewandowski, E.

K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
[Crossref] [PubMed]

Li, X.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Liang, H. L.

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Liou, J.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Liu, Q.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liz Marzan, L. M.

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Lubensky, T. C.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Ma, Y.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Macfarlane, R. J.

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Maier, S. A.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Mirkin, C. A.

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Mitus, A. C.

Mucic, R. C.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Mulvaney, P.

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Musevic, I.

M. Humar and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Noh, J. H.

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Park, J. H.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Pawlik, G.

Pérez Juste, J.

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Poulin, P.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Ramanathan, R.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Ross, M. B.

M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
[Crossref] [PubMed]

Sailor, M. J.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Schatz, G. C.

M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
[Crossref] [PubMed]

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

Senesi, A. J.

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Smalyukh, I. I.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
[Crossref]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref] [PubMed]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Stark, H.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Stebe, K. J.

K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
[Crossref] [PubMed]

Stinger, M. V.

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

Storhoff, J. J.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Takanishi, Y.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Tarnowski, K.

Terfort, A.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Tien, J.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Trivedi, R. P.

Uchida, Y.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Umadevi, S.

S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
[Crossref]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

von Maltzahn, G.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Walasik, W.

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wang, N.

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Weitz, D. A.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

Whitesides, G. M.

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Wiesner, U.

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Yamamoto, J.

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Young, K. L.

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Yuan, Y.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, J.

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Zhang, Y.

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

S. Umadevi, X. Feng, and T. Hegmann, “Large Area Self‐Assembly of Nematic Liquid‐Crystal‐Functionalized Gold Nanorods,” Adv. Funct. Mater. 23(11), 1393–1403 (2013).
[Crossref]

J. Pérez Juste, L. M. Liz Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14(6), 571–579 (2004).
[Crossref]

Adv. Mater. (2)

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS‐coded gold nanorods as a multifunctional platform for densely multiplexed near‐infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Y. Uchida, Y. Takanishi, and J. Yamamoto, “Controlled fabrication and photonic structure of cholesteric liquid crystalline shells,” Adv. Mater. 25(23), 3234–3237 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks,” Angew. Chem. Int. Ed. Engl. 50(50), 11985–11989 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. K. Bisoyi and S. Kumar, “Liquid-crystal nanoscience: an emerging avenue of soft self-assembly,” Chem. Soc. Rev. 40(1), 306–319 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 410–417 (2010).
[Crossref]

J. Mater. Chem. C (1)

J. H. Noh, H. L. Liang, I. Drevensek-Olenik, and J. Lagerwall, “Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets,” J. Mater. Chem. C 2(5), 806–810 (2014).
[Crossref]

Langmuir (1)

J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13(20), 5349–5355 (1997).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

D. F. Gardner, J. S. Evans, and I. I. Smalyukh, “Towards reconfigurable optical metamaterials: colloidal nanoparticle self-assembly and self-alignment in liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 545(1), 1227–1245 (2011).
[Crossref]

Nano Lett. (2)

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10(4), 1347–1353 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

M. B. Ross, M. G. Blaber, and G. C. Schatz, “Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials,” Nat. Commun. 5, 4090 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, “DNA-nanoparticle superlattices formed from anisotropic building blocks,” Nat. Mater. 9(11), 913–917 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014).
[Crossref]

Science (5)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, “Nanoparticle superlattice engineering with DNA,” Science 334(6053), 204–208 (2011).
[Crossref] [PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref] [PubMed]

K. J. Stebe, E. Lewandowski, and M. Ghosh, “Materials science. Oriented assembly of metamaterials,” Science 325(5937), 159–160 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a), (b) The transmission optical microscopy images of a GNRs-dispersed LC droplet in silicon oil with a linearly polarized incident light ((a) and (b) correspond to two orthogonal polarizations of incident light). The thickness of the LC cell is 160 µm. P indicates the polarization of the incident light. (c) POM textures of the GNRs-dispersed LC droplets. P and A indicate the polarizations of the polarizer and analyzer. (d) Schematic illustration of GNRs alignment in a LC droplet. The solid lines indicate the director field of the LC.
Fig. 2
Fig. 2 (a) Polarizing two-photon excitation fluorescence microscopy image of the GNRs self-assembled in LC droplets with excitation at 850 nm and detection within 495~540 nm. P indicates the polarization of the excitation light. (b) Polarizing three-photon excitation fluorescence microscopy image of the GNRs-dispersed LC droplets with excitation at 850 nm and detection within 420~460 nm.
Fig. 3
Fig. 3 (a), (b) The transmission optical microscopy images of the GNRs-dispersed LC droplets with sinusoidal electric voltage (Vmax is 12V and frequency is 1kHz) added to the cell (thickness is 160 μm). The incident light is linearly polarized and P indicates the polarization of the incident light. (E) indicates the direction of the electric field. (c) POM textures of the GNRs-dispersed LC droplets in the same electric field. (d) Schematic illustration of GNRs alignment (XZ cross section) in a LC droplet set in an electric field. The red lines indicate the director field of the LC. The red dots indicate the disclination line.

Metrics