Abstract

We present laser-induced forward transfer of solid-phase polymer films, shaped using a Digital Micromirror Device (DMD) as a variable illumination mask. Femtosecond laser pulses with a fluence of 200-380 mJ/cm2 at a wavelength of 800 nm from a Ti:sapphire amplifier were used to reproducibly transfer thin films of poly(methyl methacrylate) as small as ~30 µm by ~30 µm with thickness ~1.3 µm. This first demonstration of DMD-based solid-phase LIFT shows minimum feature sizes of ~10µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor

David P. Banks, Christos Grivas, Ioanna Zergioti, and W. Eason Robert
Opt. Express 16(5) 3249-3254 (2008)

Printing of metallic 3D micro-objects by laser induced forward transfer

Michael Zenou and Zvi Kotler
Opt. Express 24(2) 1431-1446 (2016)

Laser forward transfer using structured light

Raymond C. Y. Auyeung, Heungsoo Kim, Scott Mathews, and Alberto Piqué
Opt. Express 23(1) 422-430 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
    [Crossref]
  2. M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
    [Crossref]
  3. J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
    [Crossref]
  4. J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
    [Crossref]
  5. S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
    [Crossref]
  6. W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).
  7. B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
    [Crossref]
  8. M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
    [Crossref]
  9. D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
    [Crossref]
  10. M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
    [Crossref]
  11. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
    [Crossref]
  12. L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
    [Crossref]
  13. M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
    [Crossref]
  14. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
    [Crossref] [PubMed]
  15. M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
    [Crossref]
  16. L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
    [Crossref]
  17. J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
    [Crossref]
  18. R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
    [Crossref]
  19. Texas Instruments, “DLP & MEMS,” http://www.ti.com/lsds/ti/analog/dlp/overview.page , accessed 5th April 2015.
  20. A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
    [Crossref]
  21. Texas Instruments, “Wavelength Transmittance Considerations for DLP ® DMD Window,” http://www.ti.com/lit/an/dlpa031c/dlpa031c.pdf , accessed 5th April 2015.
  22. Texas Instruments, “Laser Power Handling for DMDs,” http://www.ti.com/lit/wp/dlpa027/dlpa027.pdf , accessed 5th April 2015.
  23. E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
    [Crossref] [PubMed]
  24. C. Liu, “Recent developments in polymer MEMS,” Adv. Mater. 19(22), 3783–3790 (2007).
    [Crossref]
  25. S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
    [Crossref]
  26. Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
    [Crossref] [PubMed]
  27. D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
    [Crossref]
  28. S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
    [Crossref]
  29. R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

2013 (4)

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

2012 (3)

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

2011 (3)

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

2010 (2)

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

2009 (1)

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

2008 (3)

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

2007 (3)

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

C. Liu, “Recent developments in polymer MEMS,” Adv. Mater. 19(22), 3783–3790 (2007).
[Crossref]

2005 (1)

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

2004 (1)

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

1993 (1)

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Ahmad, H.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Alloncle, A. P.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Antal, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Auyeung, R. C. Y.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Banks, D. P.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

Birnbaum, A. J.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Bor, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Chang, C. M.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Charipar, N.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

Charipar, N. A.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Chen, P. L.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Chen, W. T.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Chrisey, D.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Chu, C. H.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Cibert, C.

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Constantinescu, C.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

Cui, D.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Delaporte, P.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Di Carlo, D.

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

Dlott, D. D.

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

Doxtader, M. M.

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

Eason, R. W.

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

Ellis, E. W.

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Fages, F.

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Fardel, R.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

Feinaeugle, M.

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

Gazia, R.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

Gerhold, M.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Grant-Jacob, J. A.

Grigoropoulos, C. P.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Hany, R.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Hopp, B.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Hoppenbrouwers, M. B.

Horak, P.

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

Huang, D. W.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Huang, Y. Y.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Hwang, K. C.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Jafferis, N. T.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Karnik, R. N.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Kaur, K.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

Kim, D. H.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Kim, H.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Kim, H. S.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Kim, Y. S.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Ko, S. H.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Koukharenko, E.

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

Kresz, N.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Larmande, Y.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

Lee, C. M.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Lippert, T.

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Lippert, T. K.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Liu, C.

C. Liu, “Recent developments in polymer MEMS,” Adv. Mater. 19(22), 3783–3790 (2007).
[Crossref]

Liu, J.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Liu, Z.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Lyons, K.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Majumdar, A.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Maoddi, P.

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Mathews, S.

Mathews, S. A.

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

McAlpine, M. C.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Mills, B.

Misra, N.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Molberg, M.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Murray, C.

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

Nagel, M.

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Nenon, S.

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Nüesch, F.

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Oosterhuis, G.

Pan, H.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Park, H. K.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Piqué, A.

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23(1), 422–430 (2015).
[Crossref] [PubMed]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Qi, Y.

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Rapp, L.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Rentsch, D.

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Rogers, J.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Ryu, S. G.

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Sandy Lee, I.-Y. Y.

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

Satyanarayana, S.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Shaw Stewart, J.

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

Smausz, T.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

Smith, A. T.

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

Sollier, E.

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

Sones, C. L.

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

Song, J.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Sun, S.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Tolbert, W. A.

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

Tsai, D. P.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Tseng, M. L.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Videlot-Ackermann, C.

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Wang, A. Y.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Wokaun, A.

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

Wu, J.

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Wu, P. C.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Xu, J.

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Yen, T. J.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Zhou, L.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

ACS Nano (1)

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

C. Liu, “Recent developments in polymer MEMS,” Adv. Mater. 19(22), 3783–3790 (2007).
[Crossref]

D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, and J. Rogers, “Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper,” Adv. Mater. 21(36), 3703–3707 (2009).
[Crossref]

Appl. Phys. Lett. (2)

J. Shaw Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

S. H. Ko, H. Pan, S. G. Ryu, N. Misra, C. P. Grigoropoulos, and H. K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing,” Appl. Phys. Lett. 93(15), 91–94 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

M. Feinaeugle, P. Horak, C. L. Sones, T. Lippert, and R. W. Eason, “Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling,” Appl. Phys., A Mater. Sci. Process. 116(4), 1–12 (2014).
[Crossref]

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys., A Mater. Sci. Process. 117(1), 1–7 (2014).
[Crossref]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[Crossref]

Appl. Surf. Sci. (1)

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci. 258(22), 8475–8483 (2012).
[Crossref]

EPL (Europhysics Lett. (1)

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” EPL (Europhysics Lett. 83(3), 38003 (2008).
[Crossref]

J. Appl. Phys. (3)

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys. 96(6), 3478–3481 (2004).
[Crossref]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[Crossref]

S. A. Mathews, R. C. Y. Auyeung, H. Kim, N. Charipar, and A. Piqué, “High-speed video study of laser-induced forward transfer of silver nano-suspensions,” J. Appl. Phys. 114(6), 064910 (2013).
[Crossref]

J. Imaging Sci. Technol. (2)

A. Piqué, H. Kim, R. C. Y. Auyeung, and A. T. Smith, “Laser Forward Transfer of Functional Materials for Digital Fabrication of Microelectronics,” J. Imaging Sci. Technol. 57(4), 40401–40404 (2013).
[Crossref]

W. A. Tolbert, I.-Y. Y. Sandy Lee, M. M. Doxtader, E. W. Ellis, and D. D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imaging Sci. Technol. 37, 411–421 (1993).

J. Microelectromech. Syst. (1)

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-stick room-temperature bonding technique for microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

J. Phys. Chem. C (1)

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

Lab Chip (1)

E. Sollier, C. Murray, P. Maoddi, and D. Di Carlo, “Rapid prototyping polymers for microfluidic devices and high pressure injections,” Lab Chip 11(22), 3752–3765 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photonics Rev. 6(5), 702–707 (2012).
[Crossref]

Macromol. Chem. Phys. (1)

M. Nagel, R. Hany, T. Lippert, M. Molberg, F. Nüesch, and D. Rentsch, “Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study,” Macromol. Chem. Phys. 208(3), 277–286 (2007).
[Crossref]

Nano Lett. (1)

Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Lett. 10(2), 524–528 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

J. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18(2), 025403 (2007).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

L. Rapp, C. Cibert, A. P. Alloncle, P. Delaporte, S. Nenon, C. Videlot-Ackermann, and F. Fages, “Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials,” Proc. SPIE 33, 71311L (2008).
[Crossref]

Smart Mater. Struct. (1)

M. Feinaeugle, C. L. Sones, E. Koukharenko, and R. W. Eason, “Fabrication of a thermoelectric generator on a polymer-coated substrate via laser-induced forward transfer of chalcogenide thin films,” Smart Mater. Struct. 22(11), 115023 (2013).
[Crossref]

Other (3)

Texas Instruments, “DLP & MEMS,” http://www.ti.com/lsds/ti/analog/dlp/overview.page , accessed 5th April 2015.

Texas Instruments, “Wavelength Transmittance Considerations for DLP ® DMD Window,” http://www.ti.com/lit/an/dlpa031c/dlpa031c.pdf , accessed 5th April 2015.

Texas Instruments, “Laser Power Handling for DMDs,” http://www.ti.com/lit/wp/dlpa027/dlpa027.pdf , accessed 5th April 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup.
Fig. 2
Fig. 2 SEM images of 1.3 µm thick polymer structures deposited via LIFT onto a PDMS-coated glass slide, with the inset images showing the projected spatial intensity patterns, for (a-d) a fluence of 300 mJ/cm2 using a 50x objective and a 30 nm Au DRL and (e-h) a fluence of 270 mJ/cm2 and a 20x objective with a 50 nm carbon DRL. Note the different scale bars on the figures.
Fig. 3
Fig. 3 SEM image of an array of different shaped polymer deposits using a 50 nm thick carbon DRL and 20x objective, for a range of laser fluences reducing from 300 mJ/cm2 to 235 mJ/cm2. The insets show the projected intensity profiles.
Fig. 4
Fig. 4 SEM images of arrays of two by two squares that were deposited simultaneously via the LIFT technique, with squares of different sizes and separations displayed on the DMD. Donor, receiver, objective and DRL are as in Fig. 3. Produced at fluences (a) 250 mJ/cm2 and (b) 270 mJ/cm2. The inset shows the projected intensity pattern, where the correctly scaled outside edges of the pattern are also displayed as yellow dashed lines.

Metrics