Abstract

1D and 2D patterning of uncharged micro- and nanoparticles via dielectrophoretic forces on photovoltaic z-cut Fe:LiNbO3 have been investigated for the first time. The technique has been successfully applied with dielectric micro-particles of CaCO3 (diameter d = 1-3 μm) and metal nanoparticles of Al (d = 70 nm). At difference with previous experiments in x- and y-cut, the obtained patterns locally reproduce the light distribution with high fidelity. A simple model is provided to analyse the trapping process. The results show the remarkably good capabilities of this geometry for high quality 2D light-induced dielectrophoretic patterning overcoming the important limitations presented by previous configurations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa
Opt. Express 27(2) 804-815 (2019)

Photovoltaic versus optical tweezers

Javier Villarroel, Héctor Burgos, Ángel García-Cabañes, Mercedes Carrascosa, Alfonso Blázquez-Castro, and Fernando Agulló-López
Opt. Express 19(24) 24320-24330 (2011)

Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment

Cándido Arregui, José Bruno Ramiro, Ángel Alcázar, Ángel Méndez, Héctor Burgos, Ángel García-Cabañes, and Mercedes Carrascosa
Opt. Express 22(23) 29099-29110 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  2. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  3. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  4. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
    [Crossref]
  5. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [Crossref] [PubMed]
  6. M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
    [Crossref] [PubMed]
  7. A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
    [Crossref]
  8. B. I. Sturmann and V. M. Fridkin, Photovoltaic and Photorefractive Effects in Noncentrosymetric Materials (Gordon & Breach, 1992).
  9. E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).
  10. M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
    [Crossref]
  11. T. B. Jones, Electromechanics of particles (Cambridge University Press, 1995).
  12. J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
    [Crossref] [PubMed]
  13. H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
    [Crossref]
  14. S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37(18), 3744–3746 (2012).
    [Crossref] [PubMed]
  15. M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
    [Crossref]
  16. L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
    [Crossref] [PubMed]
  17. M. Jubera, A. García-Cabañes, J. Olivares, A. Alcázar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields,” Opt. Lett. 39(3), 649–652 (2014).
    [Crossref] [PubMed]
  18. J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
    [Crossref]
  19. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
    [Crossref]
  20. F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena,” in Photorefractive Materials and Applications 1, P. Günter and J.P. Huignard, Eds. (Springer, 2006), Chap. 1.
  21. C. Arregui, J. B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
    [Crossref] [PubMed]
  22. S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
    [Crossref]
  23. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
    [Crossref]
  24. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Applications 1, 2, 3 (Springer, 2007).

2014 (3)

2013 (4)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

2012 (3)

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37(18), 3744–3746 (2012).
[Crossref] [PubMed]

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

2007 (1)

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

2003 (1)

D. A. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2000 (1)

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Agullo-Lopez, F.

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Agulló-López, F.

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

Alcázar, A.

Argiolas, N.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

Arizmendi, L.

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

Arregui, C.

Blázquez-Castro, A.

Burgos, H.

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

Carrascosa, M.

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

C. Arregui, J. B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref] [PubMed]

M. Jubera, A. García-Cabañes, J. Olivares, A. Alcázar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields,” Opt. Lett. 39(3), 649–652 (2014).
[Crossref] [PubMed]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Cristiani, I.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

de Miguel, E. M.

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

Denz, C.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37(18), 3744–3746 (2012).
[Crossref] [PubMed]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
[Crossref] [PubMed]

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Esseling, M.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37(18), 3744–3746 (2012).
[Crossref] [PubMed]

M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18(16), 17404–17411 (2010).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Ferraro, P.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

Garcia-Cabañes, A.

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

García-Cabañes, A.

García-Cabañes, Á.

Glaesener, S.

Glasener, S.

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Grier, D. A.

D. A. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grilli, S.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Holtmann, F.

Imbrock, J.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Jubera, M.

M. Jubera, A. García-Cabañes, J. Olivares, A. Alcázar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields,” Opt. Lett. 39(3), 649–652 (2014).
[Crossref] [PubMed]

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

Kong, Y.

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Limeres, J.

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Matarrubia, J.

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Memmolo, P.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

Méndez, A.

Miccio, L.

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

Nava, G.

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Olivares, J.

Pan, L.

Plaza, J. L.

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

Ramiro, J. B.

Rupp, R. A.

Sada, C.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

Sun, Q.

Tan, X.

Tang, B.

Villarroel, J.

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref] [PubMed]

Volonteri, F.

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Wang, J.

Woerdemann, M.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Xu, J.

Zaltron, A.

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

Zhang, X.

Appl. Phys. B (2)

M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113(2), 191–197 (2013).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

Appl. Phys. Lett. (5)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

M. Esseling, S. Glasener, F. Volonteri, and C. Denz, “Opto-electric particle manipulation on a bismuth silicon oxide crystal,” Appl. Phys. Lett. 100(16), 161903 (2012).
[Crossref]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[Crossref]

A. M. Glass, D. von der Linde, and T. J. Negran, “High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Nonlinear generation of higher-order combinational gratings during sequential recording in LiNbO3,” J. Opt. Soc. Am. B 17, 1440–1446 (2000).

J. Phys. D Appl. Phys. (1)

J. Matarrubia, A. Garcia-Cabañes, J. L. Plaza, F. Agullo-Lopez, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47(26), 265101 (2014).
[Crossref]

Lab Chip (1)

L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab Chip 12(21), 4449–4454 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nature (2)

D. A. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35(9), 1700–1705 (2013).
[Crossref]

Other (4)

F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena,” in Photorefractive Materials and Applications 1, P. Günter and J.P. Huignard, Eds. (Springer, 2006), Chap. 1.

P. Günter and J. P. Huignard, eds., Photorefractive Materials and Applications 1, 2, 3 (Springer, 2007).

B. I. Sturmann and V. M. Fridkin, Photovoltaic and Photorefractive Effects in Noncentrosymetric Materials (Gordon & Breach, 1992).

T. B. Jones, Electromechanics of particles (Cambridge University Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of (a) the parallel and (b) perpendicular configurations showing the light induced charge separation due to the photovoltaic effect.
Fig. 2
Fig. 2 Spatial distribution of (a) surface charge density and (b) dielectrophoretic potential in z-cut Fe:LiNbO3 for sinusoidal illumination along the x-axis. Curves for light exposure times of 0.25τ, τ, 5τ, and 20τ are plotted. For reference, the illumination intensity profile is also drawn (solid line) in (a).
Fig. 3
Fig. 3 Patterns obtained under homogeneous illumination through a rectangular slit for perpendicular, (a) and (b), and parallel geometries, (c) and (d), using CaCO3 microparticles, (a) and (c), and aluminum nanoparticles, (b) and (d). In all case the light intensity on the substrate was 26 mW/cm2.
Fig. 4
Fig. 4 Micro-photographs showing 1D periodic structuring of Al nanoparticles in (a) z-cut and (b) x-cut Fe:LiNbO3. The particle period is 28 μm, m = 0.95 and the illumination light intensity 96 mW/cm2.
Fig. 5
Fig. 5 Micro-photographs showing 1D periodic structuring of Al nanoparticles in z-cut Fe:LiNbO3 for different light time exposures: (a) 0.25τ, (b) τ, (c) 5τ and (d) 20τ. The light intensity on the substrate was 96 mW/cm2.
Fig. 6
Fig. 6 Photographs of CaCO3 microparticle patterns obtained from a Fresnel lens type light pattern on the surface of: (a) a z-cut substrate, and (b) a x-cut substrate. (c) Magnification of a region of the pattern (b) obtained with an optical microscope. Substrates were illuminated with a light intensity of 13 mW/cm2.
Fig. 7
Fig. 7 Photographs of aluminum particles patterns on z-cut surfaces obtained using two different 2D light illuminations patterns (both with I = 13 mW/cm2): (a) Fresnel lens type, and (c) mosaic of triangles; (b), (d) magnification of a region of the respective patterns obtained by optical microscopy.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

j P V = e s D l P V I u z
σ ± ( x , t ) = σ ( x ) [ 1 exp ( t / τ ) ]
σ ( x , t ) = σ ( x ) [ β I ( x ) t 1 2 β 2 I 2 ( x ) t 2 + ... ]
F D E P ( x , z , t ) = ε 0 α E 2 ( x , z , t )
V D E P ( x , z , t ) = ε 0 α E o u t 2 ( x , z , t )

Metrics