Abstract

While plasmonic metals can manipulate optical energy at the nanoscale, they suffer from significant losses at visible wavelengths. We investigate the potential of low temperature to decrease such losses in optically thick Ag films. We extract the complex dielectric function (or relative permittivity) from spectroscopic ellipsometry measurements for smooth single-crystalline, smooth polycrystalline, and rough polycrystalline films down to liquid-helium temperatures and fit these data to a temperature-dependent Drude model. Smooth single-crystalline films exhibited the largest improvements relative to room temperature. Below 50 K, the surface plasmon polariton propagation lengths increased by ~50% at 650 nm. In rough polycrystalline films, improvements of 10% are expected.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-dependent optical properties of gold thin films

Harsha Reddy, Urcan Guler, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
Opt. Mater. Express 6(9) 2776-2802 (2016)

Temperature stability of thin film refractory plasmonic materials

Matthew P. Wells, Ryan Bower, Rebecca Kilmurray, Bin Zou, Andrei P. Mihai, Gomathi Gobalakrichenane, Neil McN. Alford, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Anatoly V. Zayats, and Peter K. Petrov
Opt. Express 26(12) 15726-15744 (2018)

Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry

Kenneth Diest, Vladimir Liberman, Donna M. Lennon, Paul B. Welander, and Mordechai Rothschild
Opt. Express 21(23) 28638-28650 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [Crossref] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  6. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
    [Crossref]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  8. P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
    [Crossref]
  9. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  10. J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
    [Crossref] [PubMed]
  11. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  12. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
    [Crossref]
  13. R. Gurzhi, “On the theory of the infrared absorptivity of metals,” Sov. Phys. JETP 6(3), 506–512 (1958).
  14. R. Gurzhi, “Mutual electron correlations in metal optics,” Sov. Phys. JETP 8(4), 673–675 (1959).
  15. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
    [Crossref]
  16. T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys. 29(3), 410–535 (1964).
    [Crossref]
  17. W. E. Lawrence and J. W. Wilkins, “Umklapp electron-phonon scattering in the low-temperature resistivity of polyvalent metals,” Phys. Rev. B 6(12), 4466–4482 (1972).
    [Crossref]
  18. W. E. Lawrence and J. W. Wilkins, “Electron-electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7(6), 2317–2332 (1973).
    [Crossref]
  19. W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13(12), 5316–5319 (1976).
    [Crossref]
  20. J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
    [Crossref]
  21. R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16(12), 5277–5284 (1977).
    [Crossref]
  22. G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
    [Crossref]
  23. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
    [Crossref]
  24. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
    [Crossref] [PubMed]
  25. N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
    [Crossref] [PubMed]
  26. J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
    [Crossref]
  27. Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
    [Crossref] [PubMed]
  28. J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
    [Crossref] [PubMed]
  29. Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
    [Crossref] [PubMed]
  30. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
    [Crossref]
  31. M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
    [Crossref]
  32. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
    [Crossref]
  33. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref]
  34. F. C. Nix and D. MacNair, “The thermal expansion of pure metals. II: Molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Phys. Rev. 61(1–2), 74–78 (1942).
    [Crossref]

2015 (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

2014 (1)

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

2012 (5)

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

2011 (2)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

2010 (1)

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

2009 (2)

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
[Crossref]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

2008 (4)

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

2005 (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1993 (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
[Crossref]

1981 (1)

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

1977 (1)

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16(12), 5277–5284 (1977).
[Crossref]

1976 (2)

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13(12), 5316–5319 (1976).
[Crossref]

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

1973 (1)

W. E. Lawrence and J. W. Wilkins, “Electron-electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7(6), 2317–2332 (1973).
[Crossref]

1972 (2)

W. E. Lawrence and J. W. Wilkins, “Umklapp electron-phonon scattering in the low-temperature resistivity of polyvalent metals,” Phys. Rev. B 6(12), 4466–4482 (1972).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1964 (1)

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys. 29(3), 410–535 (1964).
[Crossref]

1962 (1)

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

1959 (1)

R. Gurzhi, “Mutual electron correlations in metal optics,” Sov. Phys. JETP 8(4), 673–675 (1959).

1958 (1)

R. Gurzhi, “On the theory of the infrared absorptivity of metals,” Sov. Phys. JETP 6(3), 506–512 (1958).

1954 (1)

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

1942 (1)

F. C. Nix and D. MacNair, “The thermal expansion of pure metals. II: Molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Phys. Rev. 61(1–2), 74–78 (1942).
[Crossref]

Alù, A.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Ambwani, P.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Bai, P.

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beach, R. T.

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16(12), 5277–5284 (1977).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bouillard, J.-S. G.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Chang, W. H.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, H. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Chen, L. J.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Christy, R. W.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16(12), 5277–5284 (1977).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dabidian, N.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

de Abajo, F. J. G.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

de Waele, R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dickson, W.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ehrenreich, H.

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

Estakhri, N. M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Gu, M.

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Gurzhi, R.

R. Gurzhi, “Mutual electron correlations in metal optics,” Sov. Phys. JETP 8(4), 673–675 (1959).

R. Gurzhi, “On the theory of the infrared absorptivity of metals,” Sov. Phys. JETP 6(3), 506–512 (1958).

Guyot-Sionnest, P.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
[Crossref]

Gwo, S.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Hegner, M.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
[Crossref]

Holstein, T.

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys. 29(3), 410–535 (1964).
[Crossref]

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, T. W.

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Kim, J.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Kurniawan, O.

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Lawrence, W. E.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13(12), 5316–5319 (1976).
[Crossref]

W. E. Lawrence and J. W. Wilkins, “Electron-electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7(6), 2317–2332 (1973).
[Crossref]

W. E. Lawrence and J. W. Wilkins, “Umklapp electron-phonon scattering in the low-temperature resistivity of polyvalent metals,” Phys. Rev. B 6(12), 4466–4482 (1972).
[Crossref]

Leighton, C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Lezec, H. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Li, B. H.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Li, E.

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Li, X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Lindquist, N. C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Liu, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
[Crossref]

Liu, X.-X.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Lu, M. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Lu, Y. J.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

MacNair, D.

F. C. Nix and D. MacNair, “The thermal expansion of pure metals. II: Molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Phys. Rev. 61(1–2), 74–78 (1942).
[Crossref]

Manno, M.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Mayy, E.

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

Mayy, M.

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

McKay, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

Nagpal, P.

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Nix, F. C.

F. C. Nix and D. MacNair, “The thermal expansion of pure metals. II: Molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Phys. Rev. 61(1–2), 74–78 (1942).
[Crossref]

Noginov, M. A.

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

O’Connor, D. P.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Oh, S.-H.

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Parkins, G. R.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

Pelton, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
[Crossref]

Philipp, H. R.

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

Polman, A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Pribil, G. K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Qiu, X.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Rayne, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Sanders, C. E.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Semenza, G.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
[Crossref]

Shih, C. K.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Shih, C.-K.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Shvets, G.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Son Chu, H.

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

Wagner, P.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
[Crossref]

Wang, C. Y.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Webb, A.

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

Wilkins, J. W.

W. E. Lawrence and J. W. Wilkins, “Electron-electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7(6), 2317–2332 (1973).
[Crossref]

W. E. Lawrence and J. W. Wilkins, “Umklapp electron-phonon scattering in the low-temperature resistivity of polyvalent metals,” Phys. Rev. B 6(12), 4466–4482 (1972).
[Crossref]

Wu, C.

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Wurtz, G. A.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

Zayats, A. V.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

Zhang, C.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Zhang, M.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Zhao, Y.

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Zhu, G.

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Adv. Mater. (2)

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24(29), 3988–3992 (2012).
[Crossref] [PubMed]

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, G. K. Pribil, A. Alù, C.-K. Shih, and X. Li, “Intrinsic optical properties and enhanced plasmonic response of epitaxial silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref] [PubMed]

Ann. Phys. (1)

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys. 29(3), 410–535 (1964).
[Crossref]

Appl. Phys. Lett. (2)

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008).
[Crossref]

J. H. Park, P. Nagpal, S.-H. Oh, and D. J. Norris, “Improved dielectric functions in metallic films obtained via template stripping,” Appl. Phys. Lett. 100(8), 081105 (2012).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Mayy, G. Zhu, E. Mayy, A. Webb, and M. A. Noginov, “Low temperature studies of surface plasmon polaritons in silver films,” J. Appl. Phys. 111(9), 094103 (2012).
[Crossref]

J. Raman Spectrosc. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005).
[Crossref]

Nano Lett. (2)

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-temperature plasmonics of metallic nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref] [PubMed]

N. C. Lindquist, T. W. Johnson, D. J. Norris, and S.-H. Oh, “Monolithic integration of continuously tunable plasmonic nanostructures,” Nano Lett. 11(9), 3526–3530 (2011).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Phys. Rev. (3)

H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962).
[Crossref]

T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev. 96(2), 535–536 (1954).
[Crossref]

F. C. Nix and D. MacNair, “The thermal expansion of pure metals. II: Molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead,” Phys. Rev. 61(1–2), 74–78 (1942).
[Crossref]

Phys. Rev. B (8)

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79(3), 035418 (2009).
[Crossref]

W. E. Lawrence and J. W. Wilkins, “Umklapp electron-phonon scattering in the low-temperature resistivity of polyvalent metals,” Phys. Rev. B 6(12), 4466–4482 (1972).
[Crossref]

W. E. Lawrence and J. W. Wilkins, “Electron-electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7(6), 2317–2332 (1973).
[Crossref]

W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metals,” Phys. Rev. B 13(12), 5316–5319 (1976).
[Crossref]

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B 13(2), 673–685 (1976).
[Crossref]

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au,” Phys. Rev. B 16(12), 5277–5284 (1977).
[Crossref]

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical conductivity σ(ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering,” Phys. Rev. B 23(12), 6408–6416 (1981).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Physica B (1)

P. Bai, H. Son Chu, M. Gu, O. Kurniawan, and E. Li, “Integration of plasmonics into nanoelectronic circuits,” Physica B 405(14), 2978–2981 (2010).
[Crossref]

Science (3)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[Crossref] [PubMed]

Sov. Phys. JETP (2)

R. Gurzhi, “On the theory of the infrared absorptivity of metals,” Sov. Phys. JETP 6(3), 506–512 (1958).

R. Gurzhi, “Mutual electron correlations in metal optics,” Sov. Phys. JETP 8(4), 673–675 (1959).

Surf. Sci. (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1–2), 39–46 (1993).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Atomic force microscope (AFM) images of the three types of Ag films investigated: (a) single-crystalline film (Sample SC), (b) template-stripped polycrystalline film (Sample TS), and (c) rough polycrystalline film (Sample Ro).
Fig. 2
Fig. 2 The real (a) and imaginary (b) parts of the dielectric function for a single-crystalline Ag film (Sample SC) at various temperatures. The real (c) and imaginary (d) parts of the dielectric functions for: (i) Sample SC, (ii) a template-stripped smooth polycrystalline film (Sample TS), and (iii) a rough film (Sample Ro) at 298 (RT) and 5 K. The data were extracted from ellipsometry measurements.
Fig. 3
Fig. 3 Expected propagation lengths at various temperatures for a rough film (blue), template-stripped polycrystalline film (red), and single-crystalline film (black). These values are calculated from the measured dielectric functions using a two-layer vacuum-Ag model.
Fig. 4
Fig. 4 (a) Expected enhancements at various temperatures (relative to 298 K) in the surface-plasmon-polariton (SPP) propagation length, LSPP, for Sample SC calculated from the measured dielectric functions. (b) The expected enhancements in LSPP at 5 K (relative to 298 K) for Samples SC, TS, and Ro. (c) Direct measurements of LSPP from single-crystalline Ag films at 298 (RT) and 25 K. 200-nm-wide slits and grooves were milled into four identical films using a focused ion beam. Illumination on the bottom of the film launches SPPs along the vacuum-Ag interface from the slit towards the groove. Scattered light from the groove is collected using a spectrometer. LSPP is extracted by fitting data from various slit-groove separations, d, to an exponential decay. Error bars represent standard deviations for the four samples. (d) Measured enhancements in LSPP determined from the data in (c).

Tables (2)

Tables Icon

Table 1 Drude Parameters Extracted from Fits of the Measured Dielectric Functions

Tables Icon

Table 2 Drude-Lorentz Parameters Extracted from Fits of the Measured Dielectric Functions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω , T ) = ε ω p 2 ( T ) ω [ ω + i ω c ( ω , T ) ] ,
ω ee ( ω , T ) = π 4 Γ Δ 6 E F [ ( k B T ) 2 + ( ω 2 π ) 2 ] , a n d
ω ep ( T ) = ω 0 [ 2 5 + 4 T 5 θ D 5 0 θ D / T z 4 e z 1 d z ] .
ε ( ω , T ) = ε ω p 2 ( T ) ω [ ω + i ω c ( ω , T ) ] + s 1 ω 1 2 ω 1 2 ω 2 i ω γ 1 .
ω p ( T ) = ω p ( T 0 ) 1 + 3 γ ( T T 0 ) .

Metrics