Abstract

Silica glasses were pre-implanted with 60 keV Zn ions at different fluences of 1 × 1016 and 1 × 1017 cm−2, respectively, and were then subjected to implantation of 45 keV Cu ions at a fluence of 5 × 1016 cm−2. The formation of metallic nanoparticles (NPs) as well as their optical properties has been studied in details. Our results clearly show that Zn ion preimplantation at a low fluence of 1.0 × 1016 cm–2 can give rise to the formation of large Cu NPs with a double-layer arrangement, which contribute a greatly enhanced surface plasmon resonance (SPR) absorption at about 572 nm. As the Zn ion fluence increases to 1.0 × 1017 cm–2, Cu/Cu–Zn core/shell NPs with a high particle density and a narrow size distribution can be obtained, resulting in a strong and broad SPR absorption band around 528 nm. Besides, the dually implanted samples also exhibit excellent third-order nonlinear optical properties comparing with the Cu solely implanted sample. The possible mechanisms for the nucleation and growth of NPs as well as for the enhancements of linear and nonlinear optical properties have been discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical linearity and nonlinearity of Nd:YAG crystal embedded with Ag nanoparticles by prior Zn ion implantation

Yixiao Niu, Yingying Wang, Gang Wang, Tao Zhang, and Changlong Liu
Opt. Mater. Express 8(12) 3666-3675 (2018)

Xe ion irradiation-induced polycrystallization of Ag nanoparticles embedded in SiO2 and related optical absorption property

Guangyi Jia, Huixian Liu, Xiaoyu Mu, Haitao Dai, and Changlong Liu
Opt. Mater. Express 4(7) 1303-1312 (2014)

Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
    [Crossref]
  2. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
    [Crossref]
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  4. S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
    [Crossref]
  5. O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
    [Crossref]
  6. L. A. H. Fleming, G. Tang, S. A. Zolotovskaya, and A. Abdolvand, “Controlled modification of optical and structural properties of glass with embedded silver nanoparticles by nanosecond pulsed laser irradiation,” Opt. Mater. Express 4(5), 969–975 (2014).
    [Crossref]
  7. B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
    [Crossref]
  8. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A. J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, “Effects of helium ion bombardment on metallic gold and iridium thin films,” Opt. Mater. Express 5(1), 176–187 (2015).
    [Crossref]
  9. A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
    [Crossref]
  10. G. Mattei, “Alloy nanoclusters in dielectric matrix,” Nucl. Instrum. Methods Phys. Res Sect. B 191, 323–332 (2002).
  11. O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
    [Crossref]
  12. V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
    [Crossref]
  13. D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
    [Crossref]
  14. M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
    [Crossref]
  15. N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
    [Crossref]
  16. Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
    [Crossref] [PubMed]
  17. İ. H. Karahan and R. Özdemir, “Effect of Cu concentration on the formation of Cu1−xZnx shape memory alloy thin films,” Appl. Surf. Sci. 318, 100–104 (2014).
    [Crossref]
  18. B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
    [Crossref] [PubMed]
  19. G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
    [Crossref]
  20. J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
    [Crossref]
  21. G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
    [Crossref] [PubMed]
  22. J. F. Ziegler, computer code, SRIM 2013, available online at: http://www.srim.org/ .
  23. W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
    [Crossref]
  24. J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
    [Crossref]
  25. J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
    [Crossref]
  26. M. Fujinami and N. B. Chilton, “Ion implantation induced defects in Si02: The applicability of the positron probe,” Appl. Phys. Lett. 62(10), 1131–1133 (1993).
    [Crossref]
  27. P. Mazzoldi and G. Mattei, “Potentialities of ion implantation for the synthesis and modification of metal nanoclusters,” Riv. Nuovo Cim. 28(7), 1–69 (2005).
  28. N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
    [Crossref]
  29. H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
    [Crossref]
  30. B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” http://arxiv.org/abs/1305.6497 (2013).
  31. I. I. Sasovskaya and V. P. Korabel, “Optical properties of α- and β-CuZn brasses in the region of quantum absorption,” Phys. Status Solidi, B Basic Res. 134(2), 621–630 (1986).
    [Crossref]
  32. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  33. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1985).
  34. Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
    [Crossref]
  35. T. V. Murzina, I. A. Kolmychek, J. Wouters, T. Verbiest, and O. A. Aktsipetrov, “Plasmon-assisted enhancement of third-order nonlinear optical effects in core (shell) nanoparticles,” J. Opt. Soc. Am. B 29(1), 138–143 (2012).
    [Crossref]
  36. P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1–2), 231–252 (1985).
    [Crossref]
  37. W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2–3), 280–284 (2004).
    [Crossref]
  38. I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
    [Crossref]
  39. Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
    [Crossref] [PubMed]
  40. D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
    [Crossref]
  41. Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
    [Crossref]
  42. M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
    [Crossref]
  43. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  44. E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
    [Crossref]
  45. G. Ma, W. Sun, S. H. Tang, H. Zhang, Z. Shen, and S. Qian, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27(12), 1043–1045 (2002).
    [Crossref] [PubMed]

2015 (4)

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref]

S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A. J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, “Effects of helium ion bombardment on metallic gold and iridium thin films,” Opt. Mater. Express 5(1), 176–187 (2015).
[Crossref]

B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (9)

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

2012 (3)

T. V. Murzina, I. A. Kolmychek, J. Wouters, T. Verbiest, and O. A. Aktsipetrov, “Plasmon-assisted enhancement of third-order nonlinear optical effects in core (shell) nanoparticles,” J. Opt. Soc. Am. B 29(1), 138–143 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

2011 (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

2010 (1)

D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
[Crossref]

2009 (2)

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

2008 (2)

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

2006 (2)

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

2005 (3)

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

P. Mazzoldi and G. Mattei, “Potentialities of ion implantation for the synthesis and modification of metal nanoclusters,” Riv. Nuovo Cim. 28(7), 1–69 (2005).

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

2004 (1)

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2–3), 280–284 (2004).
[Crossref]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

2002 (3)

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

G. Mattei, “Alloy nanoclusters in dielectric matrix,” Nucl. Instrum. Methods Phys. Res Sect. B 191, 323–332 (2002).

G. Ma, W. Sun, S. H. Tang, H. Zhang, Z. Shen, and S. Qian, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27(12), 1043–1045 (2002).
[Crossref] [PubMed]

2001 (1)

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

2000 (1)

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

1993 (1)

M. Fujinami and N. B. Chilton, “Ion implantation induced defects in Si02: The applicability of the positron probe,” Appl. Phys. Lett. 62(10), 1131–1133 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1986 (1)

I. I. Sasovskaya and V. P. Korabel, “Optical properties of α- and β-CuZn brasses in the region of quantum absorption,” Phys. Status Solidi, B Basic Res. 134(2), 621–630 (1986).
[Crossref]

1985 (1)

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1–2), 231–252 (1985).
[Crossref]

1934 (1)

W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
[Crossref]

Abdolvand, A.

Aktsipetrov, O. A.

Amekura, H.

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

Arenas-Alatorre, J.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Battaglin, G.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

Birkner, A.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Biswas, R.

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

Boatner, L. A.

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

Bondarchuk, I. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Buchal, Ch.

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

Can-Uc, B.

Cattaruzza, E.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

Chang, L. X.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Channel Evans, K. M.

W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
[Crossref]

Cheang-Wong, J. C.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Chen, K.-H.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Chichkov, B. N.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Chilton, N. B.

M. Fujinami and N. B. Chilton, “Ion implantation induced defects in Si02: The applicability of the positron probe,” Appl. Phys. Lett. 62(10), 1131–1133 (1993).
[Crossref]

Cokoja, M.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Corso, A. J.

Degtyareva, O.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Degtyareva, V. F.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Dera, P.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Derkus, B.

B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
[Crossref] [PubMed]

Dhara, S.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Dmitruk, I. M.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Emregul, E.

B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
[Crossref] [PubMed]

Emregul, K. C.

B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Evlyukhin, E. A.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Fan, Y. Z.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Fischer, R. A.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Fleming, L. A. H.

Fujinami, M.

M. Fujinami and N. B. Chilton, “Ion implantation induced defects in Si02: The applicability of the positron probe,” Appl. Phys. Lett. 62(10), 1131–1133 (1993).
[Crossref]

Galyautdinov, M. F.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Gerlin, F.

Ghosh, D. C.

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

Gonella, F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

Gritsyna, V. T.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Grünert, W.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Gu, Z.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

Gurin, V. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Haas, D.

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Haglund, R. F.

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

Heggen, M.

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

Hemley, R. J.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Houben, L.

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

Huang, Y.-F.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Hume-Rothery, W.

W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
[Crossref]

Jia, G.

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

Jia, G. Y.

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

Kailer, A.

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

Karahan, I. H.

İ. H. Karahan and R. Özdemir, “Effect of Cu concentration on the formation of Cu1−xZnx shape memory alloy thin films,” Appl. Surf. Sci. 318, 100–104 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kavetskyy, T. S.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khader, I.

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

Kishimoto, N.

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Kiyan, R.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Klementiev, K. V.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Kolmychek, I. A.

Korabel, V. P.

I. I. Sasovskaya and V. P. Korabel, “Optical properties of α- and β-CuZn brasses in the region of quantum absorption,” Phys. Status Solidi, B Basic Res. 134(2), 621–630 (1986).
[Crossref]

Kotko, A. V.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Li, D.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Li, M. H.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Li, W.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

Li, Y. D.

D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
[Crossref]

Liu, C.

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

Liu, C. L.

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

Liu, H.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

Liu, H. X.

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

Liu, Y.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Lu, C.-Y.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Ma, G.

Mabbott, G. W.

W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
[Crossref]

Magudapathy, P.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Mantl, S.

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

Mao, H. K.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Márquez, H.

Mattei, G.

P. Mazzoldi and G. Mattei, “Potentialities of ion implantation for the synthesis and modification of metal nanoclusters,” Riv. Nuovo Cim. 28(7), 1–69 (2005).

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

G. Mattei, “Alloy nanoclusters in dielectric matrix,” Nucl. Instrum. Methods Phys. Res Sect. B 191, 323–332 (2002).

Mazzoldi, P.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

P. Mazzoldi and G. Mattei, “Potentialities of ion implantation for the synthesis and modification of metal nanoclusters,” Riv. Nuovo Cim. 28(7), 1–69 (2005).

Meldrum, A.

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

Mu, X.

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

Mu, X. Y.

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

Murzina, T. V.

Napolitani, E.

Nardello, M.

Novokhatskaya, N. I.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Nuzhdin, V. I.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Oezaslan, M.

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

Ohnuma, M.

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

Oliver, A.

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref]

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Osin, Y. N.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Özdemir, R.

İ. H. Karahan and R. Özdemir, “Effect of Cu concentration on the formation of Cu1−xZnx shape memory alloy thin films,” Appl. Surf. Sci. 318, 100–104 (2014).
[Crossref]

Pal, U.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Pan, Z. W.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

Parala, H.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Paranthaman, M. P.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

Pelizzo, M. G.

Peña, O.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Peng, Q.

D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
[Crossref]

Polloni, R.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

Qi, W. H.

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2–3), 280–284 (2004).
[Crossref]

Qian, S.

Qian, S. X.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Qu, Y. Q.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Rangel-Rojo, R.

Renk, T. J.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Renz, A.

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

Rodríguez-Fernández, L.

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23(3), 3176–3185 (2015).
[Crossref]

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Rodríguez-Iglesias, V.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sakharov, M. K.

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

Sasovskaya, I. I.

I. I. Sasovskaya and V. P. Korabel, “Optical properties of α- and β-CuZn brasses in the region of quantum absorption,” Phys. Status Solidi, B Basic Res. 134(2), 621–630 (1986).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schröter, M. K.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Scremin, B. F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, Y. Y.

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

Shen, Z.

Shi, J. L.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Silva-Pereyra, H. G.

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

Stepanov, A. L.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Strasser, P.

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

Sun, W.

Takeda, Y.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Tang, G.

Tang, S. H.

Tessarolo, E.

Thompson, M. O.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Tu, W.-S.

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Umeda, N.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Valeev, V. F.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

van den Berg, M. W. E.

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Verbiest, T.

Voorhees, P. W.

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1–2), 231–252 (1985).
[Crossref]

Wang, D. S.

D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
[Crossref]

Wang, J.

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

Wang, J. P.

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

Wang, M. P.

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2–3), 280–284 (2004).
[Crossref]

Wang, Z.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

White, C. W.

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

Wouters, J.

Xu, J.

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

Xu, R.

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

Xu, Y. H.

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

Yang, H. B.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Yang, N.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Yang, Y.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Yeshchenko, O. A.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

You, G. J.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, B.

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

Zhang, H.

Zhang, L. H.

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

Zhang, X. D.

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhu, H. Y.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Zhu, L.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

Zhu, R. Y.

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Zolotovskaya, S. A.

Zou, G. T.

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Zuccon, S.

Zuppella, P.

ACS Appl. Mater. Interfaces (2)

Z. Wang, L. Zhu, W. Li, and H. Liu, “Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass,” ACS Appl. Mater. Interfaces 5(11), 4808–4814 (2013).
[Crossref] [PubMed]

G. Jia, R. Xu, X. Mu, and C. Liu, “Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution,” ACS Appl. Mater. Interfaces 5(24), 13055–13062 (2013).
[Crossref] [PubMed]

ACS Nano (1)

Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano 3(2), 273–278 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, “Nanocomposite materials formed by ion implantation,” Adv. Mater. 13(19), 1431–1444 (2001).
[Crossref]

Appl. Phys. B (1)

Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang, and J. L. Shi, “Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO3 thin films,” Appl. Phys. B 76(4), 435–439 (2003).
[Crossref]

Appl. Phys. Lett. (3)

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett. 102(13), 133102 (2013).
[Crossref]

M. Fujinami and N. B. Chilton, “Ion implantation induced defects in Si02: The applicability of the positron probe,” Appl. Phys. Lett. 62(10), 1131–1133 (1993).
[Crossref]

S. Dhara, C.-Y. Lu, P. Magudapathy, Y.-F. Huang, W.-S. Tu, and K.-H. Chen, “Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system,” Appl. Phys. Lett. 106(2), 023101 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys., A Mater. Sci. Process. 111(1), 261–264 (2013).
[Crossref]

Appl. Surf. Sci. (2)

İ. H. Karahan and R. Özdemir, “Effect of Cu concentration on the formation of Cu1−xZnx shape memory alloy thin films,” Appl. Surf. Sci. 318, 100–104 (2014).
[Crossref]

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: Negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247(1–4), 390–395 (2005).
[Crossref]

EPL (1)

G. Y. Jia, J. Wang, L. H. Zhang, H. X. Liu, R. Xu, and C. L. Liu, “Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation,” EPL 101(5), 57005 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Int. J. Mol. Sci. (1)

D. C. Ghosh and R. Biswas, “Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii,” Int. J. Mol. Sci. 3(2), 87–113 (2002).
[Crossref]

J. Alloys Compd. (1)

J. Wang, L. H. Zhang, X. D. Zhang, Y. Y. Shen, and C. L. Liu, “Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions,” J. Alloys Compd. 549, 231–237 (2013).
[Crossref]

J. Appl. Phys. (2)

J. Wang, G. Y. Jia, B. Zhang, H. X. Liu, and C. L. Liu, “Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles,” J. Appl. Phys. 113(3), 034304 (2013).
[Crossref]

H. Amekura, M. Ohnuma, N. Kishimoto, Ch. Buchal, and S. Mantl, “Fluence-dependent formation of Zn and ZnO nanoparticles by ion implantation and thermal oxidation: An attempt to control nanoparticle size,” J. Appl. Phys. 104(11), 114309 (2008).
[Crossref]

J. Eur. Ceram. Soc. (1)

I. Khader, A. Renz, A. Kailer, and D. Haas, “Thermal and corrosion properties of silicon nitride for copper die casting components,” J. Eur. Ceram. Soc. 33(3), 593–602 (2013).
[Crossref]

J. Mater. Chem. (1)

M. Cokoja, H. Parala, M. K. Schröter, A. Birkner, M. W. E. van den Berg, K. V. Klementiev, W. Grünert, and R. A. Fischer, “Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles,” J. Mater. Chem. 16(25), 2420–2428 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (2)

O. Peña, U. Pal, L. Rodríguez-Fernández, H. G. Silva-Pereyra, V. Rodríguez-Iglesias, J. C. Cheang-Wong, J. Arenas-Alatorre, and A. Oliver, “Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation,” J. Phys. Chem. C 113(6), 2296–2300 (2009).
[Crossref]

M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, “Formation and analysis of core−shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts,” J. Phys. Chem. C 116(36), 19073–19083 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

V. F. Degtyareva, O. Degtyareva, M. K. Sakharov, N. I. Novokhatskaya, P. Dera, H. K. Mao, and R. J. Hemley, “Stability of Hume-Rothery phases in Cu–Zn alloys at pressures up to 50 GPa,” J. Phys. Condens. Matter 17(50), 7955–7962 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

J. Stat. Phys. (1)

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys. 38(1–2), 231–252 (1985).
[Crossref]

Mater. Chem. Phys. (1)

W. H. Qi and M. P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles,” Mater. Chem. Phys. 88(2–3), 280–284 (2004).
[Crossref]

Mater. Res. Bull. (1)

N. Yang, H. B. Yang, Y. Q. Qu, Y. Z. Fan, L. X. Chang, H. Y. Zhu, M. H. Li, and G. T. Zou, “Preparation of Cu–Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties,” Mater. Res. Bull. 41(11), 2154–2160 (2006).
[Crossref]

Nano Res. (1)

D. S. Wang, Q. Peng, and Y. D. Li, “Nanocrystalline intermetallics and alloys,” Nano Res. 3(8), 574–580 (2010).
[Crossref]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res Sect. B (1)

G. Mattei, “Alloy nanoclusters in dielectric matrix,” Nucl. Instrum. Methods Phys. Res Sect. B 191, 323–332 (2002).

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (2)

Philos. Trans. R. Soc. A (1)

W. Hume-Rothery, G. W. Mabbott, and K. M. Channel Evans, “The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups,” Philos. Trans. R. Soc. A 233(721-730), 1–97 (1934).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

I. I. Sasovskaya and V. P. Korabel, “Optical properties of α- and β-CuZn brasses in the region of quantum absorption,” Phys. Status Solidi, B Basic Res. 134(2), 621–630 (1986).
[Crossref]

Riv. Nuovo Cim. (1)

P. Mazzoldi and G. Mattei, “Potentialities of ion implantation for the synthesis and modification of metal nanoclusters,” Riv. Nuovo Cim. 28(7), 1–69 (2005).

Surf. Sci. (1)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Talanta (1)

B. Derkus, E. Emregul, and K. C. Emregul, “Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode,” Talanta 134, 206–214 (2015).
[Crossref] [PubMed]

Vacuum (1)

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, and M. O. Thompson, “In-beam growth and rearrangement of nanoparticles in insulators induced by high-current negative copper ions,” Vacuum 58(1), 60–78 (2000).
[Crossref]

Other (3)

J. F. Ziegler, computer code, SRIM 2013, available online at: http://www.srim.org/ .

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1985).

B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” http://arxiv.org/abs/1305.6497 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simulated depth profiles of Zn-induced vacancies, Zn and Cu implants. They have the same vertical coordinate as shown on the right, but the units of vacancy and implants are (nm•ion)−1 and at.%, respectively.
Fig. 2
Fig. 2 XTEM results of the (a) Cu, (b) Zn1 + Cu and (c) Zn10 + Cu samples. The corresponding SAED pattern is inserted in each image.
Fig. 3
Fig. 3 Particle size distributions of the (a) Cu, (b) Zn1 + Cu and (c) Zn10 + Cu samples. The corresponding average diameters D and standard deviations σ are also given in each figure.
Fig. 4
Fig. 4 Average atomic-number distributions of Cu and Zn across the whole implanted layer of the Zn10 + Cu sample. The symbols are the experimental data and the lines are drawn only for a guide of eyes. Inset shows the HAADF image and corresponding line-scanned position.
Fig. 5
Fig. 5 (a) HAADF image of the Zn10 + Cu sample; (b) and (c) are the average atomic-number profiles of Cu and Zn crossing the selected particles 1 and 2, respectively.
Fig. 6
Fig. 6 Optical absorption spectra of (a) the as-implanted samples and (b) the Zn10 + Cu sample before and after annealing at different temperatures.
Fig. 7
Fig. 7 (a) Optical absorption coefficients Qabs calculated for Cu/β-brass core/shell, β-brass, and Cu NPs embedded in SiO2 by using DDA method. (b), (c) and (d) respectively present the plots of the normalized electric field intensity |E| of the core-shell, β-brass, and Cu NPs at 532 nm. The electric field polarization E and propagation k vectors are indicated in (d).
Fig. 8
Fig. 8 Normalized (a) open-aperture and (b) closed-aperture Z-scan transmittances of the Cu, Cu + Zn1, Zn1 + Cu and Zn10 + Cu samples. Symbols are the experimental results and solid lines are the theoretical fittings.

Tables (2)

Tables Icon

Table 1 Sample names and implantation parameters

Tables Icon

Table 2 Nonlinear optical parameters of the samples measured at the wavelength of 532 nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T open ( z )= m=0 ( q 0 ) m ( 1+ x 2 ) m ( m+1 ) 3/2  ,  
T closed ( z )=1 4xΔψ ( x 2 +9 )( x 2 +1 )  . 
χ R (3) = c n 2 120 π 2 ( γ α 0 2kn α 2k ) , 
χ I (3) = c n 2 120 π 2 ( α 2k + α 0 2kn γ ) . 

Metrics