Abstract

In this study, we focus on refractive-index and Abbe-number improvements to optical polyesters. First, we modify polymers by introducing sulfonyl groups and removing phenyl groups in the monomer structure. In this manner, new polymers with Abbe numbers higher than 40 are synthesized. To further increase the refractive index and Abbe number, the polymers are hybridized with well-dispersed alumina nanoparticles (NPs). The prepared polymer/alumina nanocomposites have a high refractive index and Abbe number; (nD = 1.580 and VD = 55) and (nD = 1.631 and VD = 53), which easily exceeds the empirical “limiting line” of conventional optical polymers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Organic-inorganic optical materials

S. Motakef, J. M. Boulton, and D. R. Uhlmann
Opt. Lett. 19(15) 1125-1127 (1994)

Improving Faraday rotation performance with block copolymer and FePt nanoparticle magneto-optical composite

Alexander Miles, Yue Gai, Palash Gangopadhyay, Xinyu Wang, Robert A. Norwood, and James J. Watkins
Opt. Mater. Express 7(6) 2126-2140 (2017)

High refractive index, low Abbe number halide glasses

D. C. Ziegler and C. A. Angell
Appl. Opt. 21(12) 2096_1-2098 (1982)

References

  • View by:
  • |
  • |
  • |

  1. T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
    [Crossref]
  2. C. J. Yang and S. A. Jenekhe, “Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines,” Macromol. 28(4), 1180–1196 (1995).
    [Crossref]
  3. H. Dislich, “Plastics as optical materials,” Angew. Chem. Int. Ed. Engl. 18(1), 49–59 (1979).
    [Crossref]
  4. Optical Products, http://corporateportal.ppg.com . (accessed Sept 15, 2013).
  5. G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).
  6. R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
    [Crossref]
  7. J. G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
    [Crossref]
  8. R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
    [Crossref]
  9. C. L. Lv and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
    [Crossref]
  10. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
    [Crossref]
  11. B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
    [Crossref]
  12. K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
    [Crossref]
  13. M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
    [Crossref]
  14. T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
    [Crossref]
  15. J. G. Speight, Lange’s Handbook of Chemistry (McGraw-Hill, 2005) 16th ed. p. 508.
  16. H. Dislich and A. Jacobsen, “Light guide systems for the ultraviolet region of the spectrum,” Angew. Chem. Int. Ed. Engl. 12(6), 439–444 (1973).
    [Crossref]
  17. Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
    [Crossref]
  18. G. Suri, M. Tyagi, G. Seshadri, G. L. Verma, R. K. Khandal, “Novel nanocomposite optical plastics: dispersion of titanium in polyacrylates,” J. Nanotechnology 531284 (2010)
    [Crossref]
  19. Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
    [Crossref]
  20. W. R. Caseri, “Nanocomposites of polymers and inorganic particles: preparation, structure and properties,” Mater. Sci. Technol. 22(7), 807–817 (2006).
    [Crossref]
  21. M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496(2), 505–514 (2006).
    [Crossref]

2014 (1)

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

2013 (3)

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
[Crossref]

2012 (1)

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

2011 (1)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

2010 (1)

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

2009 (2)

J. G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[Crossref]

C. L. Lv and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

2008 (2)

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

2006 (2)

W. R. Caseri, “Nanocomposites of polymers and inorganic particles: preparation, structure and properties,” Mater. Sci. Technol. 22(7), 807–817 (2006).
[Crossref]

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496(2), 505–514 (2006).
[Crossref]

2000 (1)

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

1998 (1)

T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
[Crossref]

1995 (1)

C. J. Yang and S. A. Jenekhe, “Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines,” Macromol. 28(4), 1180–1196 (1995).
[Crossref]

1979 (1)

H. Dislich, “Plastics as optical materials,” Angew. Chem. Int. Ed. Engl. 18(1), 49–59 (1979).
[Crossref]

1973 (1)

H. Dislich and A. Jacobsen, “Light guide systems for the ultraviolet region of the spectrum,” Angew. Chem. Int. Ed. Engl. 12(6), 439–444 (1973).
[Crossref]

Abe, K.

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Adschiri, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Beuerman, R.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Braun, M. M.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496(2), 505–514 (2006).
[Crossref]

Cai, B.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Caseri, W. R.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

W. R. Caseri, “Nanocomposites of polymers and inorganic particles: preparation, structure and properties,” Mater. Sci. Technol. 22(7), 807–817 (2006).
[Crossref]

Chang, C.-C.

Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
[Crossref]

Chan-Park, M. B.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Chen, T.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Chen, W. C.

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

Compoy-Quiles, M.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Dislich, H.

H. Dislich, “Plastics as optical materials,” Angew. Chem. Int. Ed. Engl. 18(1), 49–59 (1979).
[Crossref]

H. Dislich and A. Jacobsen, “Light guide systems for the ultraviolet region of the spectrum,” Angew. Chem. Int. Ed. Engl. 12(6), 439–444 (1973).
[Crossref]

Elim, H. I.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Ferenczi, T. A. M.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Funae, Y.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

Garriga, M.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Goh, E. S. M.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Hakwer, C. J.

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Jacobsen, A.

H. Dislich and A. Jacobsen, “Light guide systems for the ultraviolet region of the spectrum,” Angew. Chem. Int. Ed. Engl. 12(6), 439–444 (1973).
[Crossref]

Jenekhe, S. A.

C. J. Yang and S. A. Jenekhe, “Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines,” Macromol. 28(4), 1180–1196 (1995).
[Crossref]

Jha, G. S.

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

Judeh, Z.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Kaino, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Khandal, R. K.

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

Kohmoto, S.

T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
[Crossref]

Komber, H.

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Konno, M.

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Lacharmoise, P.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Lin, P. H.

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

Liou, G. S.

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

Liu, J. G.

J. G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[Crossref]

Lv, C. L.

C. L. Lv and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

Matsuda, T.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

Mohan, A.

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

Nagao, D.

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Okubo, T.

T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
[Crossref]

Okutsu, R.

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

Pilon, L.

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496(2), 505–514 (2006).
[Crossref]

Pötzsch, R.

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Rao, Y.-C.

Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
[Crossref]

Russo, M.

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Seshadri, G.

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

Shinji, A.

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

Stahl, B. C.

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Sugihara, O.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Suzuki, Y.

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

Takata, T.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

Ueda, M.

J. G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[Crossref]

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

Voit, B. I.

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Watanabe, A.

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Xu, R.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Yamamoto, M.

T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
[Crossref]

Yamamoto, T.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

Yang, B.

C. L. Lv and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

Yang, C. J.

C. J. Yang and S. A. Jenekhe, “Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines,” Macromol. 28(4), 1180–1196 (1995).
[Crossref]

Yen, H. J.

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

Yoshida, M.

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

Yu, Y. Y.

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

Yu, Y.-Y.

Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
[Crossref]

Zhang, Q.-Y.

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

H. Dislich, “Plastics as optical materials,” Angew. Chem. Int. Ed. Engl. 18(1), 49–59 (1979).
[Crossref]

H. Dislich and A. Jacobsen, “Light guide systems for the ultraviolet region of the spectrum,” Angew. Chem. Int. Ed. Engl. 12(6), 439–444 (1973).
[Crossref]

Appl. Phys. Express (1)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

e-Poly. (1)

G. S. Jha, G. Seshadri, A. Mohan, and R. K. Khandal, “Sulfur containing optical plastics and its ophthalmic lenses applications,” e-Poly. 8(1), 376–402 (2008).

J. Appl. Polym. Sci. (3)

T. Okubo, S. Kohmoto, and M. Yamamoto, “Synthesis, characterization, and optical properties of polymers comprising 1, 4-dithiane-2, 5-bis (thiomethyl) group,” J. Appl. Polym. Sci. 68(11), 1791–1799 (1998).
[Crossref]

Q.-Y. Zhang, E. S. M. Goh, R. Beuerman, Z. Judeh, M. B. Chan-Park, T. Chen, and R. Xu, “Development of optically transparent ZnS/poly(vinylpyrrolidone) nanocomposite films with high refractive indices and high Abbe numbers,” J. Appl. Polym. Sci. 129(4), 1793–1798 (2013).
[Crossref]

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, and T. Takata, “Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates,” J. Appl. Polym. Sci. 76(1), 45–49 (2000).
[Crossref]

J. Mater. Chem. (2)

C. L. Lv and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

J. G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, “Flexible nanocrystalline titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability,” J. Polym. Sci. A Polym. Chem. 48(6), 1433–1440 (2010).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

M. Russo, M. Compoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, and W. R. Caseri, “Stingelin, N. One‐pot synthesis of polymer/inorganic hybrids: toward readily accessible, low‐loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., B, Polym. Phys. 50(1), 65–74 (2012).
[Crossref]

Macromol. (2)

R. Okutsu, Y. Suzuki, A. Shinji, and M. Ueda, “Poly(thioether sulfone) with high refractive index and high Abbe’s number,” Macromol. 41(16), 6165–6168 (2008).
[Crossref]

C. J. Yang and S. A. Jenekhe, “Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines,” Macromol. 28(4), 1180–1196 (1995).
[Crossref]

Mater. Sci. Technol. (1)

W. R. Caseri, “Nanocomposites of polymers and inorganic particles: preparation, structure and properties,” Mater. Sci. Technol. 22(7), 807–817 (2006).
[Crossref]

Polym. Chem. (1)

R. Pötzsch, B. C. Stahl, H. Komber, C. J. Hakwer, and B. I. Voit, “High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiolyne chemistry,” Polym. Chem. 5(8), 2911–2921 (2014).
[Crossref]

Polym. Int. (1)

K. Abe, D. Nagao, A. Watanabe, and M. Konno, “Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability,” Polym. Int. 62(1), 141–145 (2013).
[Crossref]

Thin Solid Films (2)

M. M. Braun and L. Pilon, “Effective optical properties of non-absorbing nanoporous thin films,” Thin Solid Films 496(2), 505–514 (2006).
[Crossref]

Y.-Y. Yu, Y.-C. Rao, and C.-C. Chang, “Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films,” Thin Solid Films 546, 236–241 (2013).
[Crossref]

Other (3)

J. G. Speight, Lange’s Handbook of Chemistry (McGraw-Hill, 2005) 16th ed. p. 508.

G. Suri, M. Tyagi, G. Seshadri, G. L. Verma, R. K. Khandal, “Novel nanocomposite optical plastics: dispersion of titanium in polyacrylates,” J. Nanotechnology 531284 (2010)
[Crossref]

Optical Products, http://corporateportal.ppg.com . (accessed Sept 15, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Monomers structures used in polyesters synthesis.
Fig. 2
Fig. 2 Wavelength dispersions of the experimental refractive.
Fig. 3
Fig. 3 An nDVD diagram of conventional optical polymers and the materials fabricated in this work. The empirical limiting region is demarcated by the dashed line. The conventional polymers (■) from 1 to 7 are: 1, polyacrylate; 2, CR-39; 3, Zeonex E48R; 4, polycarbonate; 5, polystyrene; 6, MR-6; and 7, PEN polymer. Triangles (▲) indicate the nanocomposites of 8, ZnS-poly(vinylpyrrolidone) [17]; 9, TiO2-polyacrylate [18]; 10, TiO2-epoxy [19]. Circles (●) indicate the polymers synthesized in this study; while (★) indicates BHESP/TDGA/alumina (nD = 1.580, VD = 55) and BHESP/PA/alumina (nD = 1.63, VD = 53) nanocomposites.
Fig. 4
Fig. 4 Transmittance and Abbe number comparison of polymer/alumina and polymer/zirconia nanocomposites by Rayleigh-scattering theory and effective-refractive-index theory.
Fig. 5
Fig. 5 (a) Calculated transmittance of a polymer/alumina nanocomposite as a function of nanoparticle diameter and volume percentage, based on Rayleigh-scattering theory. (b) Transmission electron microscope (TEM) image of alumina NPs used in this study.
Fig. 6
Fig. 6 UV–Vis transmittance spectra of the BHESP/TDGA polymer and its 20 vol% alumina nanocomposite.

Tables (1)

Tables Icon

Table 1 Molecular Refraction and Molecular Dispersion

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V D = ( n D 1 ) / ( n F n C )
V D = 6 n D ( n D +2 )( n D +1 ) R ΔR
n eff 2 = V poly n poly 2 + V NPs n NPs 2

Metrics