Abstract

Theoretical analysis of the electromagnetic wave scattering of cylindrical waves from chiral coated nihility cylinder placed in isotropic plasma medium is carried out. The scattering problem is analytically formulated in the frame work of extended classical scattering theory. The cylindrical vector wave functions (CVWFs) are used for the expansion and representation of fields. The appropriate boundary conditions are applied on each interface i.e., Plasma/Chiral and chiral/nihility to get the unknown scattering coefficients. It is concluded that the scattering amplitude can be controlled and tuned by the plasma parameters (plasma density and effective collision frequency) as well as the chirality. Moreover, the present work has practical applications in target protection and microwave controlling devices. Under the special conditions, present work found good agreement with already published literature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering of an electromagnetic plane wave by a sphere embedded in a cylinder

Fabio Mangini and Nicola Tedeschi
J. Opt. Soc. Am. A 34(5) 760-769 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Capolino, Applications of Metamaterials (CRC press, 2009)
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006)
  3. M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
    [Crossref]
  4. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
    [Crossref]
  5. M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
    [Crossref]
  6. A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides,” Opt. Mater. Express 4(9), 1756–1761 (2014).
    [Crossref]
  7. A. Lakhtakia, “An electromagnetic trinity from “negative permittivity” and “negative permeability”,” Int. J. Infrared Millim. Waves 23(6), 813–818 (2002).
    [Crossref]
  8. A. Lakhtakia, “Scattering by a nihility sphere,” Microw. Opt. Technol. Lett. 48(5), 895–896 (2006).
    [Crossref]
  9. A. Lakhtakia and J. B. Geddes, “Scattering by a nihility cylinder,” AEU-I. J. Elec. and Commun. 61(1), 62–65 (2007).
  10. S. Ahmed and Q. A. Naqvi, “Scattering of electromagnetic waves by a coated nihility cylinder,” Int. J. Infrared Millim. Waves 30(10), 1044–1052 (2009).
    [Crossref]
  11. S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a chiral-coated nihility cylinder,” Prog. in Electromag. Res. Lett. 18, 41–50 (2010).
  12. S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
    [Crossref]
  13. C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Prog. in Electromag. Res. 42, 91–105 (2003).
  14. O. Sakai and K. Tachibana, “Plasmas as metamaterials: a review,” Plasma Sou. Sci.and Tech. 21(1), 013001 (2012).
    [Crossref]
  15. O. Sakai, “Emerging aspects in a plasma-metamaterial composite,” Gen. A. and Sci.c Sym. 21(1), 13001 (2011).
  16. A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer,” J. Eur. Opt. Soc-Rapid. 10, 1501–1505 (2015).

2015 (2)

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer,” J. Eur. Opt. Soc-Rapid. 10, 1501–1505 (2015).

2014 (2)

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides,” Opt. Mater. Express 4(9), 1756–1761 (2014).
[Crossref]

2012 (1)

O. Sakai and K. Tachibana, “Plasmas as metamaterials: a review,” Plasma Sou. Sci.and Tech. 21(1), 013001 (2012).
[Crossref]

2011 (1)

O. Sakai, “Emerging aspects in a plasma-metamaterial composite,” Gen. A. and Sci.c Sym. 21(1), 13001 (2011).

2010 (1)

S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a chiral-coated nihility cylinder,” Prog. in Electromag. Res. Lett. 18, 41–50 (2010).

2009 (1)

S. Ahmed and Q. A. Naqvi, “Scattering of electromagnetic waves by a coated nihility cylinder,” Int. J. Infrared Millim. Waves 30(10), 1044–1052 (2009).
[Crossref]

2008 (1)

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

2007 (2)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

A. Lakhtakia and J. B. Geddes, “Scattering by a nihility cylinder,” AEU-I. J. Elec. and Commun. 61(1), 62–65 (2007).

2006 (1)

A. Lakhtakia, “Scattering by a nihility sphere,” Microw. Opt. Technol. Lett. 48(5), 895–896 (2006).
[Crossref]

2003 (1)

C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Prog. in Electromag. Res. 42, 91–105 (2003).

2002 (1)

A. Lakhtakia, “An electromagnetic trinity from “negative permittivity” and “negative permeability”,” Int. J. Infrared Millim. Waves 23(6), 813–818 (2002).
[Crossref]

Afzaal, M.

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

Ahmed, S.

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a chiral-coated nihility cylinder,” Prog. in Electromag. Res. Lett. 18, 41–50 (2010).

S. Ahmed and Q. A. Naqvi, “Scattering of electromagnetic waves by a coated nihility cylinder,” Int. J. Infrared Millim. Waves 30(10), 1044–1052 (2009).
[Crossref]

Alkanhal, M. A. S.

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer,” J. Eur. Opt. Soc-Rapid. 10, 1501–1505 (2015).

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides,” Opt. Mater. Express 4(9), 1756–1761 (2014).
[Crossref]

Bonache, J.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Geddes, J. B.

A. Lakhtakia and J. B. Geddes, “Scattering by a nihility cylinder,” AEU-I. J. Elec. and Commun. 61(1), 62–65 (2007).

Ghaffar, A.

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer,” J. Eur. Opt. Soc-Rapid. 10, 1501–1505 (2015).

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides,” Opt. Mater. Express 4(9), 1756–1761 (2014).
[Crossref]

Gil, M.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Hongo, K.

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

Lakhtakia, A.

A. Lakhtakia and J. B. Geddes, “Scattering by a nihility cylinder,” AEU-I. J. Elec. and Commun. 61(1), 62–65 (2007).

A. Lakhtakia, “Scattering by a nihility sphere,” Microw. Opt. Technol. Lett. 48(5), 895–896 (2006).
[Crossref]

A. Lakhtakia, “An electromagnetic trinity from “negative permittivity” and “negative permeability”,” Int. J. Infrared Millim. Waves 23(6), 813–818 (2002).
[Crossref]

Li, C.

C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Prog. in Electromag. Res. 42, 91–105 (2003).

Martín, F.

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Naqvi, Q. A.

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a chiral-coated nihility cylinder,” Prog. in Electromag. Res. Lett. 18, 41–50 (2010).

S. Ahmed and Q. A. Naqvi, “Scattering of electromagnetic waves by a coated nihility cylinder,” Int. J. Infrared Millim. Waves 30(10), 1044–1052 (2009).
[Crossref]

Sakai, O.

O. Sakai and K. Tachibana, “Plasmas as metamaterials: a review,” Plasma Sou. Sci.and Tech. 21(1), 013001 (2012).
[Crossref]

O. Sakai, “Emerging aspects in a plasma-metamaterial composite,” Gen. A. and Sci.c Sym. 21(1), 13001 (2011).

Shen, Z.

C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Prog. in Electromag. Res. 42, 91–105 (2003).

Shoukat, S.

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

Sihvola, A.

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Syed, A. A.

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

Tachibana, K.

O. Sakai and K. Tachibana, “Plasmas as metamaterials: a review,” Plasma Sou. Sci.and Tech. 21(1), 013001 (2012).
[Crossref]

AEU-I. J. Elec. and Commun. (1)

A. Lakhtakia and J. B. Geddes, “Scattering by a nihility cylinder,” AEU-I. J. Elec. and Commun. 61(1), 62–65 (2007).

Gen. A. and Sci.c Sym. (1)

O. Sakai, “Emerging aspects in a plasma-metamaterial composite,” Gen. A. and Sci.c Sym. 21(1), 13001 (2011).

Int. J. Infrared Millim. Waves (2)

S. Ahmed and Q. A. Naqvi, “Scattering of electromagnetic waves by a coated nihility cylinder,” Int. J. Infrared Millim. Waves 30(10), 1044–1052 (2009).
[Crossref]

A. Lakhtakia, “An electromagnetic trinity from “negative permittivity” and “negative permeability”,” Int. J. Infrared Millim. Waves 23(6), 813–818 (2002).
[Crossref]

J. Eur. Opt. Soc-Rapid. (1)

A. Ghaffar and M. A. S. Alkanhal, “Electromagnetic field intensity distribution along focal region of a metallic circular reflector covered with a plasma layer,” J. Eur. Opt. Soc-Rapid. 10, 1501–1505 (2015).

Metamaterials (Amst.) (2)

M. Gil, J. Bonache, and F. Martín, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Lakhtakia, “Scattering by a nihility sphere,” Microw. Opt. Technol. Lett. 48(5), 895–896 (2006).
[Crossref]

Opt. Commun. (1)

M. Afzaal, A. A. Syed, Q. A. Naqvi, and K. Hongo, “Scattering of electromagnetic plane wave by an impedance strip embedded in homogeneous isotropic chiral medium,” Opt. Commun. 342, 115–124 (2015).
[Crossref]

Opt. Mater. Express (1)

Optik-I. J.for Light and Electron Optics. (1)

S. Shoukat, A. A. Syed, S. Ahmed, and Q. A. Naqvi, “Scattering from a coated nihility circular cylinder placed in chiral metamaterial,” Optik-I. J.for Light and Electron Optics. 125(15), 3886–3890 (2014).
[Crossref]

Plasma Sou. Sci.and Tech. (1)

O. Sakai and K. Tachibana, “Plasmas as metamaterials: a review,” Plasma Sou. Sci.and Tech. 21(1), 013001 (2012).
[Crossref]

Prog. in Electromag. Res. (1)

C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Prog. in Electromag. Res. 42, 91–105 (2003).

Prog. in Electromag. Res. Lett. (1)

S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from a chiral-coated nihility cylinder,” Prog. in Electromag. Res. Lett. 18, 41–50 (2010).

Other (2)

F. Capolino, Applications of Metamaterials (CRC press, 2009)

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Concentric coated chiral coated nihility cylinder placed in plasma medium.
Fig. 2
Fig. 2 Comparison of (a) Present work with published literature [10,13] (b) Co-polarized bistatic echo widths of chiral coated nihility cylinder placed in free space and isotropic plasma medium at ( b = 10 c m ,   a = 5 c m ,   f = 1   G H z ,     n = 1.0 × 10 16 m 3   and   v = 1.0 × 10 10 H z ,     ε r 2 = 2.5   a n d   β 2 = 0.002   ) .
Fig. 3
Fig. 3 Comparison of (a) Co-polarized bistatic echo widths of chiral coated cylinders placed in plasma medium. (b) Cross-polarized bistatic echo widths of chiral coated cylinders placed in plasma medium at ( b = 10 c m ,   a = 5 c m ,   f = 1   G H z ,     n = 1.0 × 10 15 m 3   and   v = 1.0 × 10 10 H z ,     ε r 2 = 2.5 ,     β 2 = 0.002   a n d   β 3 = 0.001   ) .
Fig. 4
Fig. 4 Influence of electron density on (a) Co-polarized bistatic echo widths. (b)) Cross-polarized bistatic echo widths at ( b = 10 c m , a = 5 c m , f = 1 G H z , v = 1.0 × 10 10 H z , ε r 2 = 2.5   a n d   β 2 = 0.0002 ) .
Fig. 5
Fig. 5 Influence of effective collision frequency on (a) Co-polarized bistatic echo widths (b) Cross-polarized bistatic echo widths at ( b = 10 c m ,   a = 5 c m ,   f = 1   G H z ,     n = 1.0 × 10 15 m 3 , ε r 2 = 2.5   a n d   β 2 = 0.002 ) .
Fig. 6
Fig. 6 Influence of chirality parameter on (a) Co-polarized bistatic echo widths (b) Cross-polarized bistatic echo widths ( n = 2.0 × 10 15 m 3 ,   v = 1   G H z   a n d     ε r 2 = 2.2   ) .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E i = E 0 n= j n [ M n ( 1 ) ( k 1 ρ )+ N n ( 1 ) ( k 1 ρ ) ]
H i = j E 0 η 1 n= j n [ M n ( 1 ) ( k 1 ρ )+ N n ( 1 ) ( k 1 ρ ) ]
  E s = E 0 n= j n [ a n N n ( 2 ) ( k 1 ρ )+ b n M n ( 2 ) ( k 1 ρ ) ]
  H s = j E 0 η 1 n= j n [ a n M n ( 2 ) ( k 1 ρ )+ b n N n ( 2 ) ( k 1 ρ ) ]
E c = E 0 n= j n [ c n [ M n ( 3 ) ( k + ρ )+ N n ( 3 ) ( k + ρ ) ]+ d n [ M n ( 3 ) ( k + ρ )+ N n ( 3 ) ( k + ρ ) ] ] E 0 n= j n [ e n [ M n ( 2 ) ( k + ρ )+ N n ( 2 ) ( k + ρ ) ]+ f n [ M n ( 2 ) ( k + ρ )+ N n ( 2 ) ( k + ρ ) ] ]
  H c   = j E 0 η 2 n= n= j n [ c n [ M n ( 3 ) ( k + ρ )+ N n ( 3 ) ( k + ρ ) ]+ d n [ M n ( 3 ) ( k + ρ )+ N n ( 3 ) ( k + ρ ) ] ] j E 0 η 2 n= n= j n [ e n [ M n ( 2 ) ( k + ρ )+ N n ( 2 ) ( k + ρ ) ]+ f n [ M n ( 2 ) ( k + ρ )+ N n ( 2 ) ( k + ρ ) ] ]
E t = E 0 n= j n [ g n [ M n ( 1 ) ( k + ρ )+ N n ( 1 ) ( k + ρ ) ]+ h n [ M n ( 1 ) ( k ρ ) N n ( 1 ) ( k ρ ) ] ]
H t  = j E 0 η 3 n= j n [ g n [ M n ( 1 ) ( k + ρ )+ N n ( 1 ) ( k + ρ ) ]+ h n [ M n ( 1 ) ( k ρ ) N n ( 1 ) ( k ρ ) ] ]

Metrics