Abstract

Herein, we investigate the emission properties of Er - BiOCl in the range of ∼500 to 1700 nm under down - (488 and 973 nm) and NIR (telecom - wavelength at ~1500 nm) up - conversion excitation as well high energy X-ray excitation. The dependencies of red (~670 nm) and NIR (~800 nm) to green emission (~543 nm) ratio with Er concentration, excitation mode and delay after laser pulse as well as the up - conversion excitation spectra and decays are analyzed in terms of competitive ground state absorption/excited state absorption and energy transfer up - conversion mechanisms. The CIE chromaticity diagram show single excitation (~1500 nm), delay induced emission color change from yellowish green (delay of 0.001 ms) to reddish orange (delay of 1 ms). The X-ray induced emission of Er - BiOCl presents an atypical red to green emission ratio that exceeds that measured under optical down - conversion excitation by a factor of 13. The potential of Er - BiOCl for optical /X-ray imaging applications is discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells

Svetlana Ivanova and Fabienne Pellé
J. Opt. Soc. Am. B 26(10) 1930-1938 (2009)

Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals

Yangqing Wu, Shaobing Lin, Jingjing Liu, Yang Ji, Jun Xu, Ling Xu, and Kunji Chen
Opt. Express 25(19) 22648-22657 (2017)

Up-conversion luminescence of Er3+-Yb3+ co-doped CaIn2O4

Ting Li, Chongfeng Guo, and Lin Li
Opt. Express 21(15) 18281-18289 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
    [Crossref]
  2. K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
    [Crossref]
  3. X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
    [Crossref] [PubMed]
  4. K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
    [Crossref]
  5. F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
    [Crossref]
  6. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
    [Crossref]
  7. O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
    [Crossref]
  8. J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
    [Crossref] [PubMed]
  9. D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
    [Crossref] [PubMed]
  10. A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
    [Crossref] [PubMed]
  11. Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
    [Crossref]
  12. Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
    [Crossref]
  13. G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
    [Crossref] [PubMed]
  14. D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
    [Crossref] [PubMed]
  15. K. Zheng, D. Zhao, D. Zhang, N. Liu, and W. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
    [Crossref] [PubMed]
  16. S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” JOSA B 26(10), 1930–1938 (2009).
    [Crossref]
  17. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
    [Crossref]
  18. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
    [Crossref]
  19. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
    [Crossref]
  20. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [Crossref]
  21. Y. Wang and J. Ohwaki, “High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993).
    [Crossref]
  22. S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
    [Crossref]
  23. S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
    [Crossref]
  24. G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
    [Crossref]
  25. R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
    [Crossref]
  26. L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
    [Crossref]
  27. C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
    [Crossref] [PubMed]
  28. F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45(1-6), 341–345 (1990).
    [Crossref]
  29. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
    [Crossref] [PubMed]
  30. M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
    [Crossref]
  31. M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100(1-4), 35–45 (2002).
    [Crossref]
  32. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
    [Crossref] [PubMed]
  33. A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
    [Crossref]
  34. J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
    [Crossref]
  35. I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
    [Crossref] [PubMed]
  36. C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
    [Crossref]
  37. S. M. Seltzer and J. H. Hubbell, Tables and Graphs of Photon Mass Attenuation Coefficient and Mass Energy-Absorption Coefficients for Photon Energies 1 keV to 20 MeV for Elements Z = 1 to 92 and Some Dosimetric Materials, Appendix to invited plenary lecture by J.H. Hubbell “45 Years (1950-1995) with X-Ray Interactions and Applications” presented at the 51st National Meeting of the Japanese Society of Radiological Technology, Japan, 14–16 April. 1995.
  38. A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7(6), 532–563 (2012).
    [Crossref]
  39. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
    [Crossref] [PubMed]
  40. M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
    [Crossref] [PubMed]

2014 (8)

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
[Crossref]

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

2013 (5)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

2012 (3)

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
[Crossref]

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7(6), 532–563 (2012).
[Crossref]

2011 (2)

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

2010 (7)

K. Zheng, D. Zhao, D. Zhang, N. Liu, and W. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
[Crossref] [PubMed]

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

2009 (1)

S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” JOSA B 26(10), 1930–1938 (2009).
[Crossref]

2008 (2)

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

2007 (1)

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

2006 (1)

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

2005 (1)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

2004 (1)

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[Crossref] [PubMed]

2002 (2)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100(1-4), 35–45 (2002).
[Crossref]

1999 (1)

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

1994 (1)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

1993 (2)

Y. Wang and J. Ohwaki, “High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993).
[Crossref]

K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
[Crossref]

1990 (1)

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45(1-6), 341–345 (1990).
[Crossref]

Adusumalli, V. N.

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Ai, Z.

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

Allen, J. S.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Amans, D.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Apostol, N.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45(1-6), 341–345 (1990).
[Crossref]

Avram, D.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Bednarkiewicz, A.

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7(6), 532–563 (2012).
[Crossref]

Belley, M. D.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Belsky, A.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Biner, D.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Bo, X.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Caruthers, S. D.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Chaput, F.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Chen, G.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Chen, S.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Choi, E. T.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Cojocaru, B.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Dash, A.

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

Dawes, J. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

De la Rosa, E.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

de Wild, J.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Diaz-Torres, L. A.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

Dujardin, C.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Fischer, S.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Flask, C. A.

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

Frei, G.

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Friend, C. S.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Froehlich, B.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Frumar, M.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Frumarova, B.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Gaffney, P. J.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Gao, M.

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

Gapontzev, V. P.

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Gianneschi, N. C.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Gnach, A.

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7(6), 532–563 (2012).
[Crossref]

Goldschmidt, J. C.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Goldys, E. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Guan, T.

A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
[Crossref]

Güdel, H. U.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Guyot, Y.

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Hainfeld, J. F.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[Crossref] [PubMed]

Hehlen, M. P.

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Heo, J.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Hermle, M.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Hu, G.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Huang, S. D.

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

Huang, W.

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

Ivanova, S.

S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” JOSA B 26(10), 1930–1938 (2009).
[Crossref]

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Ivaturi, A.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Jia, F.

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

Jimenez, R. E.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Jin, D.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Joubert, M. F.

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Ju, Y.

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

Kachynski, A.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Kandanapitiye, M. S.

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

Kapoor, R.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Karmali, P. P.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Keramidas, K. G.

K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
[Crossref]

Kinsella, J. M.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Kirsch, D. G.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Kohl, J.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Kohoutek, T.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Kotamraju, V. R.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Krämer, K. W.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Kulesa, A.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Kumar, G. A.

G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
[Crossref]

Lanza, G. M.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Ledoux, G.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Li, A.

A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
[Crossref]

Li, C.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Li, J.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Li, W. W.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Li, Y.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Li, Z.

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

Liang, J.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Liu, C.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Liu, J.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Liu, N.

Long, L. L.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Löper, P.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Lu, X.

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Luo, H.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Lüthi, S. R.

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

Mahalingam, V.

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

Martín-Rodríguez, R.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Meijerink, A.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Meza, O.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

Moghe, P. V.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Molter, J.

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

Naczynski, D. J.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Nguyen, G.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Nikl, M.

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Ohwaki, J.

Y. Wang and J. Ohwaki, “High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993).
[Crossref]

Oswald, J.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Pan, D.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Park, W. J.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Parvulescu, V.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Patra, A.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Pavlista, M.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Pellé, F.

S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” JOSA B 26(10), 1930–1938 (2009).
[Crossref]

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Peng, Y.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Pillonnet, A.

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Piper, J. A.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Pokhrel, M.

G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
[Crossref]

Pollnau, M.

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

Prasad, P. N.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

Prikryl, J.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Proksa, R.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Pu, F.

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

Qin, W.

Qiu, J.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Rasche, V.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Rath, J. K.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Ren, K.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Rentzeperis, I. Z.

K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
[Crossref]

Richards, B. S.

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Riman, R. E.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Rodrigues, A.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Roessl, E.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Roth, C. M.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Ruoslahti, E.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Rush, A. M.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Sailor, M. J.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Salas, P.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

Sanchez-Dominguez, M.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Sardar, D. K.

G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
[Crossref]

Sarkar, S.

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

Schlomka, J.-P.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Schropp, R. E. I.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Scott, M. J.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Senpan, A.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Shalav, A.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Shan, J.

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Slatkin, D. N.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[Crossref] [PubMed]

Smilowitz, H. M.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[Crossref] [PubMed]

Solis, D.

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

Song, Z.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Stanton, I. N.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Strizik, L.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Stupack, D.

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

Sun, Z.

A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
[Crossref]

Svoboda, R.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tan, M. C.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Therien, M. J.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Tiseanu, C.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Tkachuk, A.

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Trupke, T.

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Uddi, M.

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

Van Sark, W. G. J. H. M.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

Vela-Gonzalez, A. V.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Voutsas, G. P.

K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
[Crossref]

Wagner, T.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Wall, B.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Walsh, B. M.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Wan, R.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Wang, L. W.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Wang, Q.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Wang, S.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Wang, W. K.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Wang, X.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Wang, X. B.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang and J. Ohwaki, “High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993).
[Crossref]

Weber, M. J.

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100(1-4), 35–45 (2002).
[Crossref]

Wickline, S. A.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Xia, Y.

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

Yang, Y.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Yang, Z.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Yao, N.

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Yin, Z.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Yoshizumi, T. T.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Yu, H. Q.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

Yu, X.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Zevon, M.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Zhang, D.

Zhang, H.

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Zhang, J.

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

Zhang, K.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Zhang, L.

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

Zhang, X.

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

Zhao, D.

Zhao, J.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Zheng, K.

Zheng, X.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

Zhou, D.

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Zou, X.

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhang, X. B. Wang, L. W. Wang, W. K. Wang, L. L. Long, W. W. Li, and H. Q. Yu, “Synthesis of A Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets,” ACS Appl. Mater. Interfaces 6(10), 7766–7772 (2014).
[Crossref] [PubMed]

ACS Nano (1)

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. Shan, M. Uddi, N. Yao, and Y. Ju, “Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence,” Adv. Funct. Mater. 20(20), 3530–3537 (2010).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

J. M. Kinsella, R. E. Jimenez, P. P. Karmali, A. M. Rush, V. R. Kotamraju, N. C. Gianneschi, E. Ruoslahti, D. Stupack, and M. J. Sailor, “X-Ray Computed Tomography Imaging of Breast Cancer by using Targeted Peptide-Labeled Bismuth Sulfide Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(51), 12308–12311 (2011).
[Crossref] [PubMed]

D. Pan, E. Roessl, J.-P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, P. J. Gaffney, E. T. Choi, V. Rasche, S. A. Wickline, R. Proksa, and G. M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging,” Angew. Chem. Int. Ed. Engl. 49(50), 9635–9639 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005).
[Crossref]

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, D. Zhou, and Q. Wang, “High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation,” Appl. Phys. Lett. 103(23), 231104 (2013).
[Crossref]

Ceram. Int. (1)

Y. Li, Z. Song, C. Li, R. Wan, J. Qiu, Z. Yang, Z. Yin, Y. Yang, X. Wang, and Q. Wang, “Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature,” Ceram. Int. 39(8), 8911–8916 (2013).
[Crossref]

Chem. Mater. (1)

R. Martín-Rodríguez, S. Fischer, A. Ivaturi, B. Froehlich, K. W. Krämer, J. C. Goldschmidt, B. S. Richards, and A. Meijerink, “Highly Efficient IR to NIR Upconversion in Gd2O2S:Er3+ for Photovoltaic Applications,” Chem. Mater. 25(9), 1912–1921 (2013).
[Crossref]

Cryst. Growth Des. (1)

K. Zhang, J. Liang, S. Wang, J. Liu, K. Ren, X. Zheng, H. Luo, Y. Peng, X. Zou, X. Bo, J. Li, and X. Yu, “BiOCl sub-microcrystals induced by citric acid and their high photocatalyticactivities,” Cryst. Growth Des. 12(2), 793–803 (2012).
[Crossref]

EPL (1)

A. Li, T. Guan, and Z. Sun, “Opposite size dependences of the red/green upconversion intensity ratio in sub-20 nm Yb3+, Er3+-doped β-NaGdF4 nanophosphors,” EPL 106(4), 48001 (2014).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, and A. Pillonnet, “Luminescence and scintillation properties at the nanoscale,” IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010).
[Crossref]

Inorg. Chem. (1)

M. S. Kandanapitiye, M. Gao, J. Molter, C. A. Flask, and S. D. Huang, “Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents,” Inorg. Chem. 53(19), 10189–10194 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Y. Wang and J. Ohwaki, “High‐efficiency infrared‐to‐visible upconversion of Er3+ in BaCl2,” J. Appl. Phys. 74(2), 1272–1278 (1993).
[Crossref]

J. Electrochem. Soc. (1)

F. Pu, X. Lu, Y. Xia, W. Huang, and Z. Li, “Preparation of Surface-Sulfurized Nanoflake-Like BiOCl Layered Semiconductor Films with Interbedded S2− for Enhanced Photoelectrochemical Performances,” J. Electrochem. Soc. 161(5), H269–H275 (2014).
[Crossref]

J. Lumin. (4)

S. Ivanova, F. Pellé, A. Tkachuk, M. F. Joubert, Y. Guyot, and V. P. Gapontzev, “Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters,” J. Lumin. 128(5-6), 914–917 (2008).
[Crossref]

L. Strizik, J. Zhang, T. Wagner, J. Oswald, T. Kohoutek, B. M. Walsh, J. Prikryl, R. Svoboda, C. Liu, B. Frumarova, M. Frumar, M. Pavlista, W. J. Park, and J. Heo, “Green, red and near-infrared photon up-conversion in Ga–Ge–Sb–S: Er3+ amorphous chalcogenides,” J. Lumin. 147, 209–215 (2014).
[Crossref]

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45(1-6), 341–345 (1990).
[Crossref]

M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lumin. 100(1-4), 35–45 (2002).
[Crossref]

J. Phys. Chem. B (1)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Upconversion in Er3+: ZrO2 nanocrystals,” J. Phys. Chem. B 106(8), 1909–1912 (2002).
[Crossref]

J. Phys. Chem. C (1)

X. Zhang, Z. Ai, F. Jia, and L. Zhang, “Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplatemicrospheres,” J. Phys. Chem. C 112(3), 747–753 (2008).
[Crossref]

JOSA B (1)

S. Ivanova and F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” JOSA B 26(10), 1930–1938 (2009).
[Crossref]

Kristalogr. (1)

K. G. Keramidas, G. P. Voutsas, and I. Z. Rentzeperis, “The crystal structure of BiOCl,” Kristalogr. 205(Part-1), 35–40 (1993).
[Crossref]

Langmuir (1)

A. Dash, S. Sarkar, V. N. Adusumalli, and V. Mahalingam, “Microwave Synthesis, Photoluminescence, and Photocatalytic Activity of PVA-Functionalized Eu3+-Doped BiOX (X = Cl, Br, I) Nanoflakes,” Langmuir 30(5), 1401–1409 (2014).
[Crossref] [PubMed]

Mater. Lett. (1)

G. A. Kumar, M. Pokhrel, and D. K. Sardar, “Intense visible and near infrared upconversion in M2O2S: Er (M= Y, Gd, La) phosphor under 1550nm excitation,” Mater. Lett. 68, 395–398 (2012).
[Crossref]

Mater. Sci. Eng. B (1)

O. Meza, L. A. Diaz-Torres, P. Salas, E. De la Rosa, and D. Solis, “Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3,” Mater. Sci. Eng. B 174(1-3), 177–181 (2010).
[Crossref]

Meas. Sci. Technol. (1)

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).
[Crossref]

Nano Today (1)

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7(6), 532–563 (2012).
[Crossref]

Nanoscale (2)

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. M. Roth, R. E. Riman, and P. V. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004).
[Crossref] [PubMed]

Phys. Rev. B (1)

S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60(1), 162–178 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B Condens. Matter 50(22), 16264–16273 (1994).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+(18%), Er3+(2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Other (1)

S. M. Seltzer and J. H. Hubbell, Tables and Graphs of Photon Mass Attenuation Coefficient and Mass Energy-Absorption Coefficients for Photon Energies 1 keV to 20 MeV for Elements Z = 1 to 92 and Some Dosimetric Materials, Appendix to invited plenary lecture by J.H. Hubbell “45 Years (1950-1995) with X-Ray Interactions and Applications” presented at the 51st National Meeting of the Japanese Society of Radiological Technology, Japan, 14–16 April. 1995.

Supplementary Material (1)

» Media 1: MP4 (2505 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) XRD patterns, (b) Raman, (c) DR-UV-Vis and (d) micro - XRF spectra 1/5Er-BiOCl; (e) and (f) TEM of BiOCl.
Fig. 2
Fig. 2 (a) DC excitation spectrum of 5Er - BiOCl measured around 670 nm; (b) DC emission spectra of 5Er - BiOCl measured upon excitation at 488 and 973 nm.
Fig. 3
Fig. 3 Er energy level scheme with the observed luminescence transitions and the proposed UPC mechanisms (see text).
Fig. 4
Fig. 4 Time - resolved UPC emission spectra of 1Er - BiOCl (a) and 5Er - BiOCl (b) measured at delays of 0.001 and 0.65 ms after the laser pulse. For comparison, the DC emission spectra measured at identical delay after the laser pulse are also included. The UPC and DC emission spectra in (a), (b) and (c) were normalized to 543 nm peak intensity. In (a) and (b) the RGR and NIRGR refer to red to green and NIR to green emission ratio, respectively. These are estimated as the ratio of integrated intensities in the spectral ranges of 600 - 700 nm and 500 - 600 nm and 780 - 860 nm to 500 - 600 nm, respectively (See Media 1).
Fig. 5
Fig. 5 (a) UPC excitation spectra of 1Er - BiOCl and 5Er - BiOCl monitoring the green (543 nm), red (675 nm) and NIR (803 nm) emission measured at 1µs delay after the laser pulse. All spectra were normalized at 1498 nm peak intensity; (b) Emission decays of 5Er - BiOCl under DC (λex = 488) and UPC (λex = 1498 nm) excitations; (c) Dependence of UPC emission intensity of 5Er - BiOCl on the pulse energy; (d) CIE chromaticity diagram showing the temporal evolution of the (x,y) color coordinates.
Fig. 6
Fig. 6 Comparison between the emission spectra of 5Er - BiOCl under DC, UPC and X-ray excitation irradiation. All spectra were normalized to 543 nm peak intensity.
Fig. 7
Fig. 7 (a) Dependence of the total X-ray induced luminescence (XEOL) intensity of 5Er - BiOCl on the powder specific weight. (b) X-ray induced luminescence (XEOL) spectra of 5Er - BiOCl collected at different X-ray intensities (linearity test, Upper Inset). Also included is the dependence of the XEOL intensity on the tube kilovoltage (2nd order polynomial dependence, Lower Inset).

Metrics